摘要:探路者算法(Pathfinder Algorithm, PFA)是 2019年由 Yapici 提出的一种新的元启发式算法 。该算法受群体动物的狩猎行为启发,将种群中的个体分为探路者(领导者)和跟随者;算法的寻优过程模拟了种群寻找食物的探索过程,通过探路者、跟随者二种不同种群角色间的交流来实现优化,同时在进化过程中也加强了种群三代间优良信息的保留;PFA 具有容易理解、实现简单、优化性能较好等优点。

1.算法原理

在探路者算法中,种群中的个体分为探路者(pathfinder)和跟随者(follower members),它们共同组成种群团队。探路者个体是团队的领导者,指引算法的全局搜索方向,而种群中的跟随者沿着探路者的方向进行移动。种群中个体的移动使其位置向量发生变化,其对应的工件排列也随之改变,即种群的更新。

在种群的更新过程中,探路者是该种群运动方向的探索者,先于跟随者移动,其更新方式如式(1),(2):

【优化求解】探路者优化算法matlab源码_优化求解

【优化求解】探路者优化算法matlab源码_优化求解_02

2.实验结果

【优化求解】探路者优化算法matlab源码_优化求解_03