一、简介
元胞自动机(CA)是一种用来仿真局部规则和局部联系的方法。典型的元胞自动机是定义在网格上的,每一个点上的网格代表一个元胞与一种有限的状态。变化规则适用于每一个元胞并且同时进行。典型的变化规则,决定于元胞的状态,以及其( 4 或 8 )邻居的状态。
1 对元胞自动机的初步认识
元胞自动机(CA)是一种用来仿真局部规则和局部联系的方法。典型的元
胞自动机是定义在网格上的,每一个点上的网格代表一个元胞与一种有限的状
态。变化规则适用于每一个元胞并且同时进行。
2 元胞的变化规则&元胞状态
典型的变化规则,决定于元胞的状态,以及其( 4 或 8 )邻居的状态。
3 元胞自动机的应用
元胞自动机已被应用于物理模拟,生物模拟等领域。
4 元胞自动机的matlab编程
结合以上,我们可以理解元胞自动机仿真需要理解三点。一是元胞,在matlab中可以理解为矩阵中的一点或多点组成的方形块,一般我们用矩阵中的一点代表一个元胞。二是变化规则,元胞的变化规则决定元胞下一刻的状态。三是元胞的状态,元胞的状态是自定义的,通常是对立的状态,比如生物的存活状态或死亡状态,红灯或绿灯,该点有障碍物或者没有障碍物等等。
二、源代码
% main.m
%
% This is a main script to simulate the approach, service, and departure of
% vehicles passing through a toll plaza, , as governed by the parameters
% defined below
%
% iterations = the maximal iterations of simulation
% B = number booths
% L = number lanes in highway before and after plaza
% Arrival = the mean total number of cars that arrives
% plazalength = length of the plaza
% Service = Service rate of booth
% plaza = plaza matrix
% 1 = car, 0 = empty, -1 = forbid, -3 = empty&booth
% v = velocity matrix
% vmax = max speed of car
% time = time matrix, to trace the time that the car cost to
% pass the plaza.
% dt = time step
% t_h = time factor
% departurescount = number of cars that departure the plaza in the step
% departurestime = time cost of the departure cars
% influx = influx vector
% outflux = outflux vector
% timecost = time cost of all car
% h = handle of the graphics
%
% zhou lvwen: zhou.lv.wen@gmail.com
clear;clc
iterations = 1200; % the maximal iterations of simulation
B = 3; % number booths
L = 3; % number lanes in highway before and after plaza
Arrival=3; % the mean total number of cars that arrives
plazalength = 81; % length of the plaza
[plaza, v, time,buspla] = create_plaza(B, L, plazalength);
h = show_plaza(plaza,buspla, NaN, 0.01);
timeblock=5;
dt = 0.2; % time step
t_h = 1; % time factor
vmax = 2; % max speed
vinit=1;%initial speed
busstop=6*ones(plazalength,B+2);
carstop=3*ones(plazalength,B+2);
timecost = [];
sf=0;%switchflag
for i = 1:iterations
if i==14
ss=0;
end
if i==370
ss=0;
end
function [plaza, v, time,buspla] = move_forward(plaza, v, time, vmax,buspla)
%
% move_forward car move forward governed by NS algorithm:
%
% 1. Acceleration. If the vehicle can speed up without hitting the speed limit
% vmax it will add one to its velocity, vn -> vn + 1. Otherwise, the vehicle
% has constant speed, vn -> vn .
%
% 2. Collision prevention. If the distance between the vehicle and the car ahead
% of it, dn , is less than or equal to vn , i.e. the nth vehicle will collide
% if it doesn鈥檛 slow down, then vn -> dn 鈭?1.
%
% 3. Random slowing. Vehicles often slow for non-traffic reasons (cell phones,
% coffee mugs, even laptops) and drivers occasionally make irrational choices.
% With some probability pbrake , vn -> vn 鈭?1, presuming vn > 0.
%
% 4. Vehicle movement. The vehicles are deterministically moved by their velocities,
% xn -> xn + vn.
%
% USAGE: [plaza, v, time] = move_forward(plaza, v, time, vmax)
% plaza = plaza matrix
% 1 = car, 0 = empty, -1 = forbid, -3 = empty&booth
% v = velocity matrix
% time = time matrix, to trace the time that the car cost to pass the plaza.
% vmax = max speed of car
%
% zhou lvwen: zhou.lv.wen@gmail.com
Service = 0.8; % Service rate
dt = 0.2; % time step
% Prob acceleration
probac = 0.7;
% Prob deceleration
probdc = 1;
% Prob of random deceleration
probrd = 0.3;
t_h = 1; % time factor
[L,W] = size(plaza);
%bus
% b=find(plaza==-3);
% bf=b(find(plaza(b-1)==-3));
% for i=2:length(bf)
% if bf(i)-bf(i-1)==1
% for k=i:length(bf)-1
% bf(k)=bf(k+1);
% end
% end
% % end
% bb=bf-1;
% for i=1:length(bf)
% if plaza(bf(i)+1)==0
% if bf~=404&bf~=303
% %no crushing
% if plaza(bf(i)+1)==0
% plaza(bf(i)+1)=-3;
% plaza(bb(i))=0;
% v(bf(i)+1)=v(bf(i));
% v(bb(i)+1)=v(bb(i));
% end
% if plaza(bf(i)+1)~=0&&plaza((bf(i))-L)==0&&plaza((bb(i))-L)==0
% plaza(bf(i))=0;
% plaza(bb(i))=0;
% plaza(bf(i)-L)=-3;
% plaza(bb(i)-L)=-3;
% v(bf(i))=0;
% v(bb(i))=0;
% v(bf(i)-L)=0;
% v(bb(i)-L)=0;
% elseif plaza(bf(i)-L)~=0&(plaza(bf(i)+1)==1|plaza(bf(i)+1)==-3|plaza(bf(i)+1)==-1)
% v(bf(i))=0;
% v(bb(i))=0;
% end
% else
% plaza(b(bf))=0;
% plaza(b(bb))=0;
% v(b(bf))=0;
% v(b(bb))=0;
% end
% end
% end
% gap measurement for car in (i,j)
gap = zeros(L,W);
f=find(plaza==1);
for k=1:length(f)
d = plaza(:,ceil(f(k)/(L)));
gap(f(k)) = min(find([d(rem(f(k),L)+1:end)~=0;1]))-1;
end
gap(end,:) = 0;
% update rules for speed:
% 1 Speed up, provided room
k = find((gap(f) > v(f)*t_h) & (v(f) + 1 <= vmax) & (rand(size(f)) <= probac));
v(f(k)) = v(f(k)) + 1;
% 2 No crashing
k = find((v(f)*t_h >(gap(f))) & (rand(size(f)) <= probdc));
for i=1:length(k)
if buspla(f(k(i)))~=2&&f(k(i))~=161&&f(k(i))~=242&&f(k(i))~=343
v(f(k))=gap(f(k));
end
end
% 3 Random decel
k = find((gap(f)<1) & (rand(size(f)) <= probdc));
for i=1:length(k)
if buspla(f(k(i)))~=2
v(f(k))=max(v(f(k)) - 1,0);
end
end
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
- 36.
- 37.
- 38.
- 39.
- 40.
- 41.
- 42.
- 43.
- 44.
- 45.
- 46.
- 47.
- 48.
- 49.
- 50.
- 51.
- 52.
- 53.
- 54.
- 55.
- 56.
- 57.
- 58.
- 59.
- 60.
- 61.
- 62.
- 63.
- 64.
- 65.
- 66.
- 67.
- 68.
- 69.
- 70.
- 71.
- 72.
- 73.
- 74.
- 75.
- 76.
- 77.
- 78.
- 79.
- 80.
- 81.
- 82.
- 83.
- 84.
- 85.
- 86.
- 87.
- 88.
- 89.
- 90.
- 91.
- 92.
- 93.
- 94.
- 95.
- 96.
- 97.
- 98.
- 99.
- 100.
- 101.
- 102.
- 103.
- 104.
- 105.
- 106.
- 107.
- 108.
- 109.
- 110.
- 111.
- 112.
- 113.
- 114.
- 115.
- 116.
- 117.
- 118.
- 119.
- 120.
- 121.
- 122.
- 123.
- 124.
- 125.
- 126.
- 127.
- 128.
- 129.
- 130.
- 131.
- 132.
- 133.
- 134.
- 135.
- 136.
- 137.
- 138.
- 139.
- 140.
- 141.
- 142.
- 143.
- 144.
- 145.
- 146.
- 147.
- 148.
- 149.
- 150.
- 151.
- 152.
- 153.
- 154.
- 155.
- 156.
- 157.
- 158.
- 159.
- 160.
- 161.
- 162.
- 163.
- 164.
- 165.
- 166.
- 167.
- 168.
- 169.
- 170.
- 171.
- 172.