✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

❤️

在工业生产中,机械设备的正常运行对于保证生产效率和质量至关重要。然而,由于长期运行和环境因素的影响,机械设备可能会出现故障,其中轴承故障是最常见的问题之一。因此,准确地检测和分类轴承故障对于预防设备损坏和提高生产效率至关重要。

近年来,深度学习技术在故障诊断和分类领域取得了显著的进展。深度置信网络(Deep Belief Network,DBN)是一种深度学习模型,具有强大的特征提取和分类能力,被广泛应用于故障诊断和分类任务中。然而,DBN模型的性能往往受到参数选择和训练算法的限制。

为了优化DBN模型的性能,本研究提出了一种基于北方苍鹰算法(Northern Goshawk Optimization,NGO)的优化方法,将其应用于DBN模型中,命名为NGO-DBN。北方苍鹰算法是一种模拟鸟类觅食行为的优化算法,具有全局搜索和局部优化的能力,能够有效地搜索最优解。

在本研究中,我们以轴承故障分类为例,使用NGO-DBN模型进行故障诊断和分类。首先,我们收集了大量的轴承振动信号数据,并对其进行预处理和特征提取。然后,我们将NGO-DBN模型应用于数据集,进行训练和测试。最后,我们评估了NGO-DBN模型在轴承故障分类任务中的性能,并与其他常用的分类算法进行了比较。

实验结果表明,NGO-DBN模型在轴承故障分类任务中表现出色。与传统的DBN模型相比,NGO-DBN模型具有更高的分类准确率和更好的泛化能力。与其他常用的分类算法相比,NGO-DBN模型在轴承故障分类任务中也取得了更好的性能。这表明北方苍鹰算法能够有效地优化DBN模型,提高其在故障诊断和分类任务中的性能。

综上所述,本研究提出的NGO-DBN模型在轴承故障分类任务中取得了良好的效果。这为深度学习在故障诊断和分类领域的应用提供了新的思路和方法。未来的研究可以进一步探索NGO-DBN模型在其他故障诊断和分类任务中的应用,并进一步优化算法和模型的性能。通过不断的研究和创新,我们有望实现更准确和高效的故障诊断和分类技术,为工业生产的可靠性和效率提供有力支持.

🔥核心代码

❤️

【DBN分类】基于北方苍鹰算法优化深度置信网络NGO-DBN实现轴承故障分类matlab代码_无人机

【DBN分类】基于北方苍鹰算法优化深度置信网络NGO-DBN实现轴承故障分类matlab代码_故障诊断_02

【DBN分类】基于北方苍鹰算法优化深度置信网络NGO-DBN实现轴承故障分类matlab代码_无人机_03

【DBN分类】基于北方苍鹰算法优化深度置信网络NGO-DBN实现轴承故障分类matlab代码_无人机_04

【DBN分类】基于北方苍鹰算法优化深度置信网络NGO-DBN实现轴承故障分类matlab代码_路径规划_05

⛄ 参考文献

[1] 刘仲民,翟玉晓,张鑫,等.基于DBN-IFCM的变压器故障诊断方法[J].高电压技术, 2020, 46(12):8.DOI:10.13336/j.1003-6520.hve.20200310011.

[2] 张士强.基于深度学习的故障诊断技术研究[D].哈尔滨工业大学[2023-09-02].DOI:CNKI:CDMD:2.1018.894028.

[3] 金凌峰.变压器故障特征气体检测二氧化锡基气体传感阵列及其特性[D].重庆大学,2019.

[4] 刘文泽,张俊,邓焱.基于深度置信网络和多维信息融合的变压器故障诊断方法[J].电力工程技术, 2019, 038(006):P.16-23.DOI:CNKI:SUN:JSDJ.0.2019-06-006.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 火灾扩散
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、状态估计