【机器人路径规划】利用遗传算法来确定随机障碍物并确定最佳路径(Matlab实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

利用遗传算法确定随机障碍物并找到最佳路径遗传算法是强大的优化工具,可用于复杂环境中的路径规划。在确定随机障碍物并找到最佳路径方面,遗传算法具有若干优势。 对于确定随机障碍物,该算法可以设计为对动态环境进行建模和表示,在这种环境中障碍物的出现是不可预测的。通过对可能的障碍物配置进行编码并使用适当的适应度函数,遗传算法可以探索不同的场景并识别潜在的障碍物位置。这有助于模拟现实世界中障碍物出现具有不确定性和随机性的情况。 在寻找最佳路径时,遗传算法通过进化一组候选路径来工作。在遗传算法的框架中,每条路径都表示为一个染色体。适应度函数旨在根据路径长度、平滑度和避开障碍物等因素评估路径的质量。通过选择、交叉和变异等过程,遗传算法迭代地改进路径种群,逐渐收敛到最优或接近最优的解决方案。 遗传算法处理复杂搜索空间的能力及其随机性使其适用于在有随机障碍物的环境中寻找路径。它可以探索广泛的可能路径,并适应障碍物配置的变化。此外,遗传算法可以并行化,从而在寻找最佳路径时实现更快的计算和更高的效率。 总之,使用遗传算法确定随机障碍物并找到最佳路径提供了一种灵活有效的方法。它可以处理障碍物位置的不确定性,并在复杂环境中高效地搜索最佳路径,使其成为机器人技术、自主导航和物流等各种应用中的有价值工具。

📚2 运行结果

主函数部分代码:

clear;
clc;
close all;

%% Generating Obstacles

d = 0.25; %Safe distance from obstacles
polygon1_x1 = 35+rand;
polygon1_x2 = 45+rand;
polygon1_x3 = 42+rand;
polygon1_x4 = 35+rand;
polygon1_y1 = 75+rand;
polygon1_y2 = 75+rand;
polygon1_y3 = 95+rand;
polygon1_y4 = 95+rand;
obs1_x = [polygon1_x1 polygon1_x2 polygon1_x3 polygon1_x4 polygon1_x1];
obs1_y = [polygon1_y1 polygon1_y2 polygon1_y3 polygon1_y4 polygon1_y1];
[obs1_x1,obs1_x2,obs1_x3,obs1_x4,obs1_y1,obs1_y2,obs1_y3,obs1_y4]=extended_obstacles(d,polygon1_x1,polygon1_x2,polygon1_x3,polygon1_x4,polygon1_y1,polygon1_y2,polygon1_y3,polygon1_y4);

polygon2_x1 = 35+rand;
polygon2_x2 = 42+rand;
polygon2_x3 = 40+rand;
polygon2_x4 = 35+rand;
polygon2_y1 = 55+rand;
polygon2_y2 = 55+rand;
polygon2_y3 = 65+rand;
polygon2_y4 = 65+rand;
obs2_x = [polygon2_x1 polygon2_x2 polygon2_x3 polygon2_x4 polygon2_x1];
obs2_y = [polygon2_y1 polygon2_y2 polygon2_y3 polygon2_y4 polygon2_y1];
[obs2_x1,obs2_x2,obs2_x3,obs2_x4,obs2_y1,obs2_y2,obs2_y3,obs2_y4]=extended_obstacles(d,polygon2_x1,polygon2_x2,polygon2_x3,polygon2_x4,polygon2_y1,polygon2_y2,polygon2_y3,polygon2_y4);

polygon3_x1 = 35+rand;
polygon3_x2 = 42+rand;
polygon3_x3 = 42+rand;
polygon3_x4 = 35+rand;
polygon3_y1 = 25+rand;
polygon3_y2 = 25+rand;
polygon3_y3 = 45+rand;
polygon3_y4 = 47+rand;
obs3_x = [polygon3_x1 polygon3_x2 polygon3_x3 polygon3_x4 polygon3_x1];
obs3_y = [polygon3_y1 polygon3_y2 polygon3_y3 polygon3_y4 polygon3_y1];
[obs3_x1,obs3_x2,obs3_x3,obs3_x4,obs3_y1,obs3_y2,obs3_y3,obs3_y4]=extended_obstacles(d,polygon3_x1,polygon3_x2,polygon3_x3,polygon3_x4,polygon3_y1,polygon3_y2,polygon3_y3,polygon3_y4);

polygon5_x1 = 57+rand;
polygon5_x2 = 70+rand;
polygon5_x3 = 70+rand;
polygon5_x4 = 58+rand;
polygon5_y1 = 85+rand;
polygon5_y2 = 85+rand;
polygon5_y3 = 90+rand;
polygon5_y4 = 90+rand;
obs5_x = [polygon5_x1 polygon5_x2 polygon5_x3 polygon5_x4 polygon5_x1];
obs5_y = [polygon5_y1 polygon5_y2 polygon5_y3 polygon5_y4 polygon5_y1];
[obs5_x1,obs5_x2,obs5_x3,obs5_x4,obs5_y1,obs5_y2,obs5_y3,obs5_y4]=extended_obstacles(d,polygon5_x1,polygon5_x2,polygon5_x3,polygon5_x4,polygon5_y1,polygon5_y2,polygon5_y3,polygon5_y4);

polygon6_x1 = 57+rand;
polygon6_x2 = 67+rand;
polygon6_x3 = 67+rand;
polygon6_x4 = 57+rand;
polygon6_y1 = 65+rand;
polygon6_y2 = 65+rand;
polygon6_y3 = 75+rand;
polygon6_y4 = 75+rand;
obs6_x = [polygon6_x1 polygon6_x2 polygon6_x3 polygon6_x4 polygon6_x1];
obs6_y = [polygon6_y1 polygon6_y2 polygon6_y3 polygon6_y4 polygon6_y1];
[obs6_x1,obs6_x2,obs6_x3,obs6_x4,obs6_y1,obs6_y2,obs6_y3,obs6_y4]=extended_obstacles(d,polygon6_x1,polygon6_x2,polygon6_x3,polygon6_x4,polygon6_y1,polygon6_y2,polygon6_y3,polygon6_y4);

polygon7_x1 = 58+rand;
polygon7_x2 = 68+rand;
polygon7_x3 = 68+rand;
polygon7_x4 = 58+rand;
polygon7_y1 = 45+rand;
polygon7_y2 = 45+rand;
polygon7_y3 = 59+rand;
polygon7_y4 = 59+rand;
obs7_x = [polygon7_x1 polygon7_x2 polygon7_x3 polygon7_x4 polygon7_x1];
obs7_y = [polygon7_y1 polygon7_y2 polygon7_y3 polygon7_y4 polygon7_y1];
[obs7_x1,obs7_x2,obs7_x3,obs7_x4,obs7_y1,obs7_y2,obs7_y3,obs7_y4]=extended_obstacles(d,polygon7_x1,polygon7_x2,polygon7_x3,polygon7_x4,polygon7_y1,polygon7_y2,polygon7_y3,polygon7_y4);

polygon8_x1 = 55+rand;
polygon8_x2 = 70+rand;
polygon8_x3 = 70+rand;
polygon8_x4 = 55+rand;
polygon8_y1 = 25+rand;
polygon8_y2 = 25+rand;
polygon8_y3 = 35+rand;
polygon8_y4 = 35+rand;
obs8_x = [polygon8_x1 polygon8_x2 polygon8_x3 polygon8_x4 polygon8_x1];
obs8_y = [polygon8_y1 polygon8_y2 polygon8_y3 polygon8_y4 polygon8_y1];
[obs8_x1,obs8_x2,obs8_x3,obs8_x4,obs8_y1,obs8_y2,obs8_y3,obs8_y4]=extended_obstacles(d,polygon8_x1,polygon8_x2,polygon8_x3,polygon8_x4,polygon8_y1,polygon8_y2,polygon8_y3,polygon8_y4);

polygon9_x1 = 79+rand;
polygon9_x2 = 87+rand;
polygon9_x3 = 88+rand;
polygon9_x4 = 79+rand;
polygon9_y1 = 85+rand;
polygon9_y2 = 85+rand;
polygon9_y3 = 95+rand;
polygon9_y4 = 95+rand;
obs9_x = [polygon9_x1 polygon9_x2 polygon9_x3 polygon9_x4 polygon9_x1];
obs9_y = [polygon9_y1 polygon9_y2 polygon9_y3 polygon9_y4 polygon9_y1];
[obs9_x1,obs9_x2,obs9_x3,obs9_x4,obs9_y1,obs9_y2,obs9_y3,obs9_y4]=extended_obstacles(d,polygon9_x1,polygon9_x2,polygon9_x3,polygon9_x4,polygon9_y1,polygon9_y2,polygon9_y3,polygon9_y4);

polygon10_x1 = 79+rand;
polygon10_x2 = 88+rand;
polygon10_x3 = 87+rand;
polygon10_x4 = 79+rand;
polygon10_y1 = 65+rand;
polygon10_y2 = 65+rand;
polygon10_y3 = 75+rand;
polygon10_y4 = 75+rand;
obs10_x = [polygon10_x1 polygon10_x2 polygon10_x3 polygon10_x4 polygon10_x1];
obs10_y = [polygon10_y1 polygon10_y2 polygon10_y3 polygon10_y4 polygon10_y1];
[obs10_x1,obs10_x2,obs10_x3,obs10_x4,obs10_y1,obs10_y2,obs10_y3,obs10_y4]=extended_obstacles(d,polygon10_x1,polygon10_x2,polygon10_x3,polygon10_x4,polygon10_y1,polygon10_y2,polygon10_y3,polygon10_y4);

polygon11_x1 = 79+rand;
polygon11_x2 = 88+rand;
polygon11_x3 = 89+rand;
polygon11_x4 = 79+rand;
polygon11_y1 = 42+rand;
polygon11_y2 = 42+rand;
polygon11_y3 = 52+rand;
polygon11_y4 = 52+rand;
obs11_x = [polygon11_x1 polygon11_x2 polygon11_x3 polygon11_x4 polygon11_x1];
obs11_y = [polygon11_y1 polygon11_y2 polygon11_y3 polygon11_y4 polygon11_y1];
[obs11_x1,obs11_x2,obs11_x3,obs11_x4,obs11_y1,obs11_y2,obs11_y3,obs11_y4]=extended_obstacles(d,polygon11_x1,polygon11_x2,polygon11_x3,polygon11_x4,polygon11_y1,polygon11_y2,polygon11_y3,polygon11_y4);

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]史宇航,花国祥,闫纪源,等.基于改进RRT的带电作业机器人机械臂的避障路径规划研究[J].自动化与仪表,2024,39(10):66-71.DOI:10.19557/j.cnki.1001-9944.2024.10.015.

[2]郭聚刚,于军琪,冯春勇,等.基于改进A*算法的机器人不平坦地形全局路径规划[J/OL].计算机工程与应用,1-16[2024-10-23].http://kns.cnki.net/kcms/detail/11.2127.TP.20241015.1802.016.html.

🌈4 Matlab代码实现

图片

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值