动态规划(一):01背包问题和完全背包问题

动态规划

1.01背包问题

1.1题目介绍

在这里插入图片描述

1.2思路一介绍(二维数组)

在这里插入图片描述

代码如下:

#include<iostream>
#include<algorithm>
using namespace std;
 const int N=1010;
 int v[N],w[N]; //v[N]是物品体积 w[N]是物品的价值
 int f[N][N]; //f[i][j]在体积不超j的前提下,从i个物品中选择最大值
 int main()
 {
   
     int n,m;
     cin>>n>>m;
     for(int i=1;i<=n;i++)
     {
   
         cin>>v[i]>>w[i];
     }
     for(int i=1;i<=n;i++)
     {
   
         for(int j=1;j<=m;j++)
         {
   
             f[i][j]=f[i-1][j];
             if(j>=v[i])//如果我们的背包容量j大于第i个物品的体积,我们在进行决策是否加入第i个物品
             f[i][j]=max(f[i][j],f[i-1][j-v[i]]+w[i]);
         }
     }
     cout<<f[n][m]<<endl;
     return 0;
 }

1.3思路二介绍(一维数组) 空间优化

为什么可以使用一维数组?

我们先来看一看01背包问题的状态转移方程,我们可以发现 f[i]只用到了f[i-1],其他的是没有用到的,我们可以用滚动数组来做。

还有一个原因就是我们在计算f[i] [j]的时候我们只用到了f[i-1] [j]和f[i-1] [j-v[i]],其中j和j-v[i]都是小于等于j的,在j的同一侧,所以我们综合以上两点原因就可以将二维优化到一维,即完成空间优化。

在这里插入图片描述

我们先来将二维和优化后的一维在关键算法代码上进行一下对比:

for(int i = 1; i <= n; i++) 
    for(int j = m; j >= 0; j--)
    {
   
        if(j < v[i]) 
            f[i][j] = f[i - 1][j];  // 优化前
            f[j] = f[j];            // 优化后,该行自动成立,可省略。
        else    
            f[i][j] = max(f[i - 1][j], f[i - 1][j - v[i
评论 158
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

暴躁小程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值