动态规划
目录
1.01背包问题
1.1题目介绍
1.2思路一介绍(二维数组)
代码如下:
#include<iostream>
#include<algorithm>
using namespace std;
const int N=1010;
int v[N],w[N]; //v[N]是物品体积 w[N]是物品的价值
int f[N][N]; //f[i][j]在体积不超j的前提下,从i个物品中选择最大值
int main()
{
int n,m;
cin>>n>>m;
for(int i=1;i<=n;i++)
{
cin>>v[i]>>w[i];
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
f[i][j]=f[i-1][j];
if(j>=v[i])//如果我们的背包容量j大于第i个物品的体积,我们在进行决策是否加入第i个物品
f[i][j]=max(f[i][j],f[i-1][j-v[i]]+w[i]);
}
}
cout<<f[n][m]<<endl;
return 0;
}
1.3思路二介绍(一维数组) 空间优化
为什么可以使用一维数组?
我们先来看一看01背包问题的状态转移方程,我们可以发现 f[i]只用到了f[i-1],其他的是没有用到的,我们可以用滚动数组来做。
还有一个原因就是我们在计算f[i] [j]的时候我们只用到了f[i-1] [j]和f[i-1] [j-v[i]],其中j和j-v[i]都是小于等于j的,在j的同一侧,所以我们综合以上两点原因就可以将二维优化到一维,即完成空间优化。
我们先来将二维和优化后的一维在关键算法代码上进行一下对比:
for(int i = 1; i <= n; i++)
for(int j = m; j >= 0; j--)
{
if(j < v[i])
f[i][j] = f[i - 1][j]; // 优化前
f[j] = f[j]; // 优化后,该行自动成立,可省略。
else
f[i][j] = max(f[i - 1][j], f[i - 1][j - v[i