51NOD 1272 最大距离

本文介绍了一个算法问题,即在一个整数数组中找到两个元素组成的对,使得后一个元素大于等于前一个元素,并且这两个元素之间的下标距离最大。提供了一种O(n*log(n))的解决方案。
给出一个长度为N的整数数组A,对于每一个数组元素,如果他后面存在大于等于该元素的数,则这两个数可以组成一对。每个元素和自己也可以组成一对。例如:{5, 3, 6, 3, 4, 2},可以组成11对,如下(数字为下标):

(0,0), (0, 2), (1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (3, 3), (3, 4), (4, 4), (5, 5)。其中(1, 4)是距离最大的一对,距离为3。

//------------------------------------------------------

Input
第1行:1个数N,表示数组的长度(2 <= N <= 50000)。
第2 - N + 1行:每行1个数,对应数组元素Ai(1 <= Ai <= 10^9)。
Output
输出最大距离。
//-------------------------------------------------------

暂时只想到O(n*log(n))的方法 据说有O(n)  想到再更

struct S{
    int a;//s[i].a 表示a[i]
    int index; //s[i].index记录排序前的下标
}s[N];//问题转化为当 s[i].a>=s[j].a 求最大的s[i].index-s[j]

对s[N]按a升序排序(稳定排序) 

排序后对任意 k<=i 有 s[k].a<=s[i].a   

而且当s[k].a==s[i].a 因为是稳定排序 必然有s[k].index<s[i].index 所以对s[i] 只需要考虑s[k]  k>i

又因为s[k].a>=s[i].a 所以只要对任意j<i标记used[s[j].index]=true 

然后used[k]==false 中最大的k就是与s[i]距离最远的

通过维护一个end 表示used[k]==false 最大的k  遍历一遍 只需要O(n)复杂度

+上排序 总复杂度是O(n*log(n))

#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<string>
#include<vector>
#include<deque>
#include<queue>
#include<algorithm>
#include<set>
#include<map>
#include<stack>
#include<ctime>
#include<cmath>
#include<list>
#include<cstring>
//#include<memory.h>
using namespace std;
#define ll long long
#define ull unsigned long long
#define pii pair<int,int>
#define INF 1000000007
#define pll pair<ll,ll>
#define pid pair<int,double>

#define sci(a) scanf("%d",&a)
#define scd(a) scanf("%lf",&a)
#define scs(a) scanf("%s",a)
#define pri(a) printf("%d\n",a);
#define prd4(a) printf("%.4lf\n",a);
#define prs(a) printf("%s\n",a);
//#define CHECK_TIME

#define N 50005
struct S{
    int a,index;//s[i].a 表示a[i] s[i].index记录排序前的下标
}s[N];

bool used[N];//记录a[i]是否被读取过

bool operator<(const S&s1,const S&s2){
    return s1.a<s2.a;
}

int slove(int n){
    stable_sort(s,s+n);
    int end=n-1,res=0;
    for(int i=0;i<n;++i){
        while(used[end])
            --end;
        res=max(res,end-s[i].index);
        used[s[i].index]=true;
    }
    return res;
}

int main()
{
    int n;
    sci(n);
    for(int i=0;i<n;++i){
        sci(s[i].a);
        s[i].index=i;
    }
    pri(slove(n));
    return 0;
}


题目 51nod 3478 涉及一个矩阵问题,要求通过最少的操作次数,使得矩阵中至少有 `RowCount` 行和 `ColumnCount` 列是回文的。解决这个问题的关键在于如何高效地枚举所有可能的行和列组合,并计算每种组合所需的操作次数。 ### 解法思路 1. **预处理每一行和每一列变为回文所需的最少操作次数**: - 对于每一行,计算将其变为回文所需的最少操作次数。这可以通过比较每对对称位置的值是否相同来完成。 - 对于每一列,计算将其变为回文所需的最少操作次数,方法同上。 2. **枚举所有可能的行和列组合**: - 由于 `N` 和 `M` 的最大值为 8,因此可以枚举所有可能的行组合和列组合。 - 对于每一种组合,计算其所需的最少操作次数,并取最小值。 3. **计算操作次数**: - 对于每一种组合,需要计算哪些行和列需要修改,并且注意行和列的交叉点可能会重复计算,因此需要去重。 ### 代码实现 以下是一个可能的实现方式,使用了枚举和位运算来处理组合问题: ```python def min_operations_to_palindrome(matrix, row_count, col_count): import itertools N = len(matrix) M = len(matrix[0]) # Precompute the cost to make each row a palindrome row_cost = [] for i in range(N): cost = 0 for j in range(M // 2): if matrix[i][j] != matrix[i][M - 1 - j]: cost += 1 row_cost.append(cost) # Precompute the cost to make each column a palindrome col_cost = [] for j in range(M): cost = 0 for i in range(N // 2): if matrix[i][j] != matrix[N - 1 - i][j]: cost += 1 col_cost.append(cost) min_total_cost = float('inf') # Enumerate all combinations of rows and columns rows = list(range(N)) cols = list(range(M)) from itertools import combinations for row_comb in combinations(rows, row_count): for col_comb in combinations(cols, col_count): # Calculate the cost for this combination cost = 0 # Add row costs for r in row_comb: cost += row_cost[r] # Add column costs for c in col_comb: cost += col_cost[c] # Subtract the overlapping cells for r in row_comb: for c in col_comb: # Check if this cell is part of the palindrome calculation if r < N // 2 and c < M // 2: if matrix[r][c] != matrix[r][M - 1 - c] and matrix[N - 1 - r][c] != matrix[N - 1 - r][M - 1 - c]: cost -= 1 min_total_cost = min(min_total_cost, cost) return min_total_cost # Example usage matrix = [ [0, 1, 0], [1, 0, 1], [0, 1, 0] ] row_count = 2 col_count = 2 result = min_operations_to_palindrome(matrix, row_count, col_count) print(result) ``` ### 代码说明 - **预处理成本**:首先计算每一行和每一列变为回文所需的最少操作次数。 - **枚举组合**:使用 `itertools.combinations` 枚举所有可能的行和列组合。 - **计算成本**:对于每一种组合,计算其成本,并考虑行和列交叉点的重复计算问题。 ### 复杂度分析 - **时间复杂度**:由于 `N` 和 `M` 的最大值为 8,因此枚举所有组合的时间复杂度为 $ O(N^{RowCount} \times M^{ColCount}) $,这在实际中是可接受的。 - **空间复杂度**:主要是存储预处理的成本,空间复杂度为 $ O(N + M) $。 ### 相关问题 1. 如何优化矩阵中行和列的枚举组合以减少计算时间? 2. 在计算行和列的交叉点时,如何更高效地处理重复计算的问题? 3. 如果矩阵的大小增加到更大的范围,如何调整算法以保持效率? 4. 如何处理矩阵中行和列的回文条件不同时的情况? 5. 如何扩展算法以支持更多的操作类型,例如翻转某个区域的值?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值