【NOIP 2015 Day2 T1】跳石头(二分)

题目描述 Description
一年一度的“跳石头”比赛又要开始了!
这项比赛将在一条笔直的河道中进行,河道中分布着一些巨大岩石。组委会已经选择好了两块岩石作为比赛起点和终点。在起点和终点之间,有N块岩石(不含起点和终点的岩石)。在比赛过程中,选手们将从起点出发,每一步跳向相邻的岩石,直至到达终点。
为了提高比赛难度,组委会计划移走一些岩石,使得选手们在比赛过程中的最短跳跃距离尽可能长。由于预算限制,组委会至多从起点和终点之间移走M块岩石(不能移走起点和终点的岩石)。

输入描述 Input Description
输入文件名为 stone.in。
输入文件第一行包含三个整数L,N,M,分别表示起点到终点的距离,起点和终点之间的岩石数,以及组委会至多移走的岩石数。
接下来N行,每行一个整数,第i行的整数Di(0 < Di < L)表示第i块岩石与起点的距离。这些岩石按与起点距离从小到大的顺序给出,且不会有两个岩石出现在同一个位置。

输出描述 Output Description
输出文件名为stone.out。
输出文件只包含一个整数,即最短跳跃距离的最大值。

样例输入 Sample Input
25 5 2
2
11
14
17
21

样例输出 Sample Output
4

数据范围及提示 Data Size & Hint
对于20%的数据,0≤M≤N≤10。 对于50%的数据,0≤M≤N≤100。
对于50%的数据,0≤M≤N≤100。
对于100%的数据,0≤M≤N≤50,000,1≤L≤1,000,000,000。

题解
NOIP2015第二天的第一题,看到“使最短跳跃距离尽可能长”就应该想到这是道二分的题,我们二分一下两个石头之间的最大距离,从0~L,然后找一下能移走的石头,如果能移走,答案加一。最后如果答案大于允许移走的石头数,就在左区间二分,否则在右区间二分。

代码如下

#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
int n,m,L;
int a[51000];
bool check(int mid)
{
    int last=0,ans=0;
    for(int i=1;i<=n;i++)
    {
        if(a[i]-last<mid) ans++;//如果能移走就让答案加一 
        else last=a[i];//存一下当前石头,向后找能移走的石头 
    }
    if(ans>m) return false;//在左区间二分 
    else return true;//在右区间二分 
}
int main()
{
    scanf("%d%d%d",&L,&n,&m);
    for(int i=1;i<=n;i++)
        scanf("%d",&a[i]);
    int l=0,r=L,mid;//从0~L二分 
    while(l<=r)
    {
        mid=(l+r)/2;
        if(check(mid)) l=mid+1;
        else r=mid-1;
    }
    printf("%d",l-1);
    return 0;
}
### NOIP 2015 提高组 石头 Python 解题思路 #### 动态规划求解最小踩石子数目 对于给定的独木桥长度以及青蛙跃距离范围,目标是最小化青蛙过河过程中踩到的石子数量。此问题可以通过动态规划来解决。 定义 `dp[i]` 表示到达第 `i` 块石子位置时所踩过的最少石子数[^3]。初始化数组 `dp` 的大小为石子总数加一,并设定初始值均为无穷大(表示不可达),除了起点外设为零因为起始处无任何代价。 遍历每一个可能作为新一步起点的位置 `i` 和每一块可至的新位置 `j` ,更新 `dp[j]` 。具体来说,在每次尝试从某一点跃向另一点的过程中,如果该次跃有效,则比较当前记录下的最优方案与此次新增路径哪个更优并据此调整: ```python import sys def min_stones(n, m, stones): INF = float('inf') # 初始化dp表 dp = [INF] * n dp[0] = 0 for i in range(m): # 对于每一颗石子 for j in range(i + 1, n): # 尝试跃到后面所有的石子上去 distance = abs(stones[j] - stones[i]) if L >= distance >= D and dp[i] != INF: dp[j] = min(dp[j], dp[i] + 1) return min([val for idx,val in enumerate(dp) if stones[idx]>=L]) if any(stones>=L for stones in stones[m:]) else "无法完成" n, l, d, m = map(int, input().split()) stones_position = list(map(int, input().strip().split())) print(min_stones(n, l, d, m)) ``` 上述代码实现了基于动态规划算法计算最短路径的思想,其中 `min_stones()` 函数接收四个参数分别为:总共有多少块石子、独木桥全长、允许的最大单步跨度、已知存在几块固定不动的大石子;而输入部分则提供了这些数据的具体数值形式供调用者传入实际测试案例使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值