1009 Product of Polynomials

本文介绍了一种计算两个多项式相乘的算法实现,输入包含两个多项式的系数和指数,输出为乘法结果的多项式形式。算法首先读取两个多项式的参数,然后通过双重循环计算乘积并存储结果。

This time, you are supposed to find A×B where A and B are two polynomials.

Input Specification:

Each input file contains one test case. Each case occupies 2 lines, and each line contains the information of a polynomial:

K N​1​​ a​N​1​​​​ N​2​​ a​N​2​​​​ ... N​K​​ a​N​K​​​​

where K is the number of nonzero terms in the polynomial, N​i​​ and a​N​i​​​​ (i=1,2,⋯,K) are the exponents and coefficients, respectively. It is given that 1≤K≤10, 0≤N​K​​<⋯<N​2​​<N​1​​≤1000.

Output Specification:

For each test case you should output the product of A and B in one line, with the same format as the input. Notice that there must be NO extra space at the end of each line. Please be accurate up to 1 decimal place.

Sample Input:

2 1 2.4 0 3.2
2 2 1.5 1 0.5

Sample Output:

3 3 3.6 2 6.0 1 1.6
#include<iostream>
#include<cmath>

using namespace std;

float a[1001], b[1001], c[2001];

int main(){
	int n, exponent, cnt = 0;
	float coefficient;
	scanf("%d", &n);
	for(int i = 0; i < n; i++){
		scanf("%d %f", &exponent, &coefficient);
		a[exponent] = coefficient;
	}
	scanf("%d", &n);
	for(int i = 0; i < n; i++){
		scanf("%d %f", &exponent, &coefficient);
		b[exponent] = coefficient;
	}
	for(int i = 0; i < 1001; i++){
		if(abs(a[i]) > 1e-7){
			for(int j = 0; j < 1001; j++){
				if(abs(b[j]) > 1e-7){
					if(abs(c[i + j]) < 1e-7) cnt++;
					c[i + j] += a[i] * b[j];
					if(abs(c[i + j]) < 1e-7) cnt--;
				}
			}
		}
	}
	printf("%d", cnt);
	for(int i = 2000; i >= 0; i--){
		if(abs(c[i]) > 1e-7){
			printf(" %d %.1f", i, c[i]);
		}
	}
	return 0;
}

 

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值