1002 A+B for Polynomials

本文介绍了一种解决多项式加法问题的算法,通过使用数组实现类似基数排序的方法,在O(1)时间内高效求解两个多项式的和。该算法首先读取两个多项式的系数和指数,然后将它们相加并输出结果。

This time, you are supposed to find A+B where A and B are two polynomials.

Input Specification:

Each input file contains one test case. Each case occupies 2 lines, and each line contains the information of a polynomial:

K N​1​​ a​N​1​​​​ N​2​​ a​N​2​​​​ ... N​K​​ a​N​K​​​​

where K is the number of nonzero terms in the polynomial, N​i​​ and a​N​i​​​​ (i=1,2,⋯,K) are the exponents and coefficients, respectively. It is given that 1≤K≤10,0≤N​K​​<⋯<N​2​​<N​1​​≤1000.

Output Specification:

For each test case you should output the sum of A and B in one line, with the same format as the input. Notice that there must be NO extra space at the end of each line. Please be accurate to 1 decimal place.

Sample Input:

2 1 2.4 0 3.2
2 2 1.5 1 0.5

Sample Output:

3 2 1.5 1 2.9 0 3.2

Analyse:

    I wrote an algorithm whose time complexity is O(N), but it only passed three samples. Therefore, I had to change my code into better one which can satisfy the problem's requests in O(1) time. We can use an array to do this and that is so called "radix sort".

#include<iostream>
#include<cmath>

using namespace std;

int main(){
	float a[1001] = {0};
	int K, cnt = 0, exponent;
	float coefficient;
	for(int i = 0; i < 2; i++){
		scanf("%d", &K);
		for(int j = 0; j < K; j++){
			scanf("%d %f", &exponent, &coefficient);
			if(abs(a[exponent]) <= 1e-7) cnt++;
			a[exponent] += coefficient;
			if(abs(a[exponent]) <= 1e-7) cnt--;
		}
	}
	printf("%d", cnt);
	for(int i = 1000; i >= 0; i--){
		if(abs(a[i]) >= 1e-7) printf(" %d %.1f", i, a[i]);
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值