Complex analysis review 4

本文探讨了复分析中关于解析函数零点的重要定理,包括利用刘维尔定理证明代数基本定理,零点的孤立性质,以及如何通过赫维茨定理和罗切定理来确定复平面上的零点数量。

The zeros of analytic functions

Use Liouville theorem, we can prove the fundamental theorem of algebra.

Theorem 1

If p(z) is a polynomial, then there is at least one z0 such that p(z0)=0.

Let

f(z)=1p(z)

then if p has no roots, f is analytic on C. Implying that f is a constant, so as p.

Theorem 2

Suppose that f(z) is analytic on UC, then except for being the constant function 0, there is no accumulation point of the set {zU|f(z)=0}.

If it has a accumulation point, i.e., suppose that z1,,zn, , are zeros of f, and there is an accumulation point z0. Without loss of generality, we assume that z0=0. Then since f is analytic on U, there is a Taylor expansion of f at point 0

f(z)=a0+a1z+

Then

limnf(zn)=f(limnzn)=f(0)=a0=0.

Next we can consider f(z)/z, for the same reason we have a1=0. The process continues.

Now we can conclude that if E is a subset of U and E has an accumulation point, h1=h2 on E. Then h1=h2 on U. So for some triangular equations, if they hold in R, then they also hold in C.

The argument principle
Theorem 3

If f(z) is an analytic function inside and on some closed contour γ, and f has no zeros on γ as well as finitely many zeros inside the contour. Then the number k of zeros insider the contour γ is

k=12πiγf(z)f(z)dz.

Denote the zeros and their multiple number as z1,,zn, with respect to k1,,kn. They by Cauchy integral formula,
12πiγf(z)f(z)dz=i=1n12πiγif(z)f(z)dz.

Inside of each γi, we can write
f(z)=(zzi)kihi(z).

Where hi is nonzero, and then
f(z)f(z)=kizzi+hi(z)hi(z)

which give the desired result.
Theorem 4 (Hurwitz)

Suppose that {fj} is a sequence of analytic function on UC, for any compact subset of U, it converges uniformly to a function f. If all of the function in the sequence are not identity to zero, then f is either equals to constant function 0 or never equals to zero.

Choose any closed contour γ, then for z insider the contour

fj(z)=12πiγfj(ξ)ξzdξ

By hypothesis, let j, then

f(z)=12πiγf(ξ)ξzdξ

So f(z) is an analytic function and by the same reason fj converges to f on any compact subset of U. If f is not constant function 0 then we choose γ not pass through its zeros, which is guaranteed by the discreteness of zeros of analytic functions. And note that
12πiγfj(z)fj(z)dz=0.

We concluded that
12πiγf(z)f(z)dz=0.
Rouche’s Theorem
Theorem 4

Suppose that f(z),g(z) are analytic on UC, γ is a contour that is rectifable, on γ there holds

|f(z)g(z)|<|f(z)|,

then f,g have the same number zeros insider the contour γ.

Let N1,N2 denote the number of zeros of f,g respectively. Then

N2N1=12πiγF(z)F(z)dz.

Where F(z)=g(z)f(z). And from the hypothese, we know that
|F(z)1|<1.

Which shows that N2N1=0.

Let

p(z)=anzn++a0,an0.

Choose g(z)=anzn, then g has n roots. When R is large enough, on contour |z|=R, we have
|p(z)g(z)|<|g(z)|=|an|Rn.

By Rouche’s theorem, p has exactly n roots.
Theorem 5

Suppose that f is analytic on UC, w0=f(z0),z0U. If z0 has multiple number m, then for ρ>0 small enough, there is δ>0, such that for any AD(w0,δ), the number of zeros of f(z)A on D(z0,ρ) is exactly m.

There is some ρ>0 small enough such that f(z)f(z0) has no zeros except for z0 on D¯(z0,ρ)U. But in the circle |zz0|=ρ, there holds

|f(z)f(z0)|δ(δ>0).

Then for AD(w0,δ),
|Aw0|<|f(z)f(z0)|.

That is when |zz0|=ρ,
|(f(z)f(z0))(f(z)A)|<|f(z)f(z0)|.

This shows that f(z)A has the same number of zeros in D(z0,ρ) which is m.
代码转载自:https://pan.quark.cn/s/a4b39357ea24 本文重点阐述了利用 LabVIEW 软件构建的锁相放大器的设计方案及其具体实施流程,并探讨了该设备在声波相位差定位系统中的实际运用情况。 锁相放大器作为一项基础测量技术,其核心功能在于能够精确锁定微弱信号的频率参数并完成相关测量工作。 在采用 LabVIEW 软件开发的锁相放大器系统中,通过计算测量信号与两条参考信号之间的互相关函数,实现对微弱信号的频率锁定,同时输出被测信号的幅值信息。 虚拟仪器技术是一种基于计算机硬件平台的仪器系统,其显著特征在于用户可以根据实际需求自主设计仪器功能,配备虚拟化操作界面,并将测试功能完全由专用软件程序实现。 虚拟仪器系统的基本架构主要由计算机主机、专用软件程序以及硬件接口模块等核心部件构成。 虚拟仪器最突出的优势在于其功能完全取决于软件编程,用户可以根据具体应用场景灵活调整系统功能参数。 在基于 LabVIEW 软件开发的锁相放大器系统中,主要运用 LabVIEW 软件平台完成锁相放大器功能的整体设计。 LabVIEW 作为一个图形化编程环境,能够高效地完成虚拟仪器的开发工作。 借助 LabVIEW 软件,可以快速构建锁相放大器的用户操作界面,并且可以根据实际需求进行灵活调整和功能扩展。 锁相放大器系统的关键构成要素包括测量信号输入通道、参考信号输入通道、频率锁定处理单元以及信号幅值输出单元。 测量信号是系统需要检测的对象,参考信号则用于引导系统完成对测量信号的频率锁定。 频率锁定处理单元负责实现测量信号的锁定功能,信号幅值输出单元则负责输出被测信号的幅值大小。 在锁相放大器的实际实现过程中,系统采用了双路参考信号输入方案来锁定测量信号。 通过分析两路参考信号之间的相...
边缘计算环境中基于启发式算法的深度神经网络卸载策略(Matlab代码实现)内容概要:本文介绍了在边缘计算环境中,利用启发式算法实现深度神经网络任务卸载的策略,并提供了相应的Matlab代码实现。文章重点探讨了如何通过合理的任务划分与调度,将深度神经网络的计算任务高效地卸载到边缘服务器,从而降低终端设备的计算负担、减少延迟并提高整体系统效率。文中涵盖了问题建模、启发式算法设计(如贪心策略、遗传算法、粒子群优化等可能的候选方法)、性能评估指标(如能耗、延迟、资源利用率)以及仿真实验结果分析等内容,旨在为边缘智能计算中的模型推理优化提供可行的技术路径。; 适合人群:具备一定编程基础,熟悉Matlab工具,从事边缘计算、人工智能、物联网或智能系统优化方向的研究生、科研人员及工程技术人员。; 使用场景及目标:①研究深度神经网络在资源受限设备上的部署与优化;②探索边缘计算环境下的任务卸载机制与算法设计;③通过Matlab仿真验证不同启发式算法在实际场景中的性能表现,优化系统延迟与能耗。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,重点关注算法实现细节与仿真参数设置,同时可尝试复现并对比不同启发式算法的效果,以深入理解边缘计算中DNN卸载的核心挑战与解决方案。
### DeepSeek Review IT Project Overview DeepSeek appears to be a specialized tool or platform designed for conducting comprehensive reviews within the information technology (IT) domain, focusing on detailed analysis and evaluation of software projects, systems, or processes. The specific functionalities and features of DeepSeek can vary depending on its implementation but generally include advanced analytics capabilities. For an IT project related to reviewing with DeepSeek, one might consider integrating this tool into existing workflows using frameworks similar to those described in continue/core/llm/templates/chat.ts at main · continuedev/continue · GitHub[^1]. This integration allows leveraging sophisticated language models and automation tools that enhance the efficiency and depth of technical assessments. In addition, when working with platforms like Ollama[^2], which supports intelligent orchestration of sub-agents through Maestro—a framework developed by Dorian Darko—integrating these components could provide enhanced functionality for managing complex review tasks involving multiple agents or services. A typical setup would involve setting up repositories where codebases are stored securely while ensuring seamless interaction between different modules involved in the review process: ```bash # Clone repository containing necessary scripts and configurations git clone https://github.com/user/deepseek-review.git cd deepseek-review ``` To ensure effective collaboration among team members during development phases, adopting best practices such as continuous integration pipelines becomes crucial. These practices help maintain high standards throughout all stages from initial coding efforts down to final deployment steps. --related questions-- 1. How does incorporating machine learning algorithms improve automated code review processes? 2. What security measures should be implemented when handling sensitive data in IT projects? 3. Can you explain how version control systems facilitate collaborative work in large-scale software engineering environments? 4. In what ways do modern CI/CD pipeline solutions streamline DevOps operations?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值