Complex analysis review 4

本文探讨了复分析中关于解析函数零点的重要定理,包括利用刘维尔定理证明代数基本定理,零点的孤立性质,以及如何通过赫维茨定理和罗切定理来确定复平面上的零点数量。

The zeros of analytic functions

Use Liouville theorem, we can prove the fundamental theorem of algebra.

Theorem 1

If p(z) is a polynomial, then there is at least one z0 such that p(z0)=0.

Let

f(z)=1p(z)

then if p has no roots, f is analytic on C. Implying that f is a constant, so as p.

Theorem 2

Suppose that f(z) is analytic on UC, then except for being the constant function 0, there is no accumulation point of the set {zU|f(z)=0}.

If it has a accumulation point, i.e., suppose that z1,,zn, , are zeros of f, and there is an accumulation point z0. Without loss of generality, we assume that z0=0. Then since f is analytic on U, there is a Taylor expansion of f at point 0

f(z)=a0+a1z+

Then

limnf(zn)=f(limnzn)=f(0)=a0=0.

Next we can consider f(z)/z, for the same reason we have a1=0. The process continues.

Now we can conclude that if E is a subset of U and E has an accumulation point, h1=h2 on E. Then h1=h2 on U. So for some triangular equations, if they hold in R, then they also hold in C.

The argument principle
Theorem 3

If f(z) is an analytic function inside and on some closed contour γ, and f has no zeros on γ as well as finitely many zeros inside the contour. Then the number k of zeros insider the contour γ is

k=12πiγf(z)f(z)dz.

Denote the zeros and their multiple number as z1,,zn, with respect to k1,,kn. They by Cauchy integral formula,
12πiγf(z)f(z)dz=i=1n12πiγif(z)f(z)dz.

Inside of each γi, we can write
f(z)=(zzi)kihi(z).

Where hi is nonzero, and then
f(z)f(z)=kizzi+hi(z)hi(z)

which give the desired result.
Theorem 4 (Hurwitz)

Suppose that {fj} is a sequence of analytic function on UC, for any compact subset of U, it converges uniformly to a function f. If all of the function in the sequence are not identity to zero, then f is either equals to constant function 0 or never equals to zero.

Choose any closed contour γ, then for z insider the contour

fj(z)=12πiγfj(ξ)ξzdξ

By hypothesis, let j, then

f(z)=12πiγf(ξ)ξzdξ

So f(z) is an analytic function and by the same reason fj converges to f on any compact subset of U. If f is not constant function 0 then we choose γ not pass through its zeros, which is guaranteed by the discreteness of zeros of analytic functions. And note that
12πiγfj(z)fj(z)dz=0.

We concluded that
12πiγf(z)f(z)dz=0.
Rouche’s Theorem
Theorem 4

Suppose that f(z),g(z) are analytic on UC, γ is a contour that is rectifable, on γ there holds

|f(z)g(z)|<|f(z)|,

then f,g have the same number zeros insider the contour γ.

Let N1,N2 denote the number of zeros of f,g respectively. Then

N2N1=12πiγF(z)F(z)dz.

Where F(z)=g(z)f(z). And from the hypothese, we know that
|F(z)1|<1.

Which shows that N2N1=0.

Let

p(z)=anzn++a0,an0.

Choose g(z)=anzn, then g has n roots. When R is large enough, on contour |z|=R, we have
|p(z)g(z)|<|g(z)|=|an|Rn.

By Rouche’s theorem, p has exactly n roots.
Theorem 5

Suppose that f is analytic on UC, w0=f(z0),z0U. If z0 has multiple number m, then for ρ>0 small enough, there is δ>0, such that for any AD(w0,δ), the number of zeros of f(z)A on D(z0,ρ) is exactly m.

There is some ρ>0 small enough such that f(z)f(z0) has no zeros except for z0 on D¯(z0,ρ)U. But in the circle |zz0|=ρ, there holds

|f(z)f(z0)|δ(δ>0).

Then for AD(w0,δ),
|Aw0|<|f(z)f(z0)|.

That is when |zz0|=ρ,
|(f(z)f(z0))(f(z)A)|<|f(z)f(z0)|.

This shows that f(z)A has the same number of zeros in D(z0,ρ) which is m.
源码来自:https://pan.quark.cn/s/a4b39357ea24 《C++ Primer》作为C++编程领域中的一部权威著作,主要服务于初学者和经验丰富的开发者,致力于帮助他们深入掌握C++的核心知识。 第一章通常会详细讲解C++语言的基础概念和语法结构,包括变量的使用、数据类型的分类、常量的定义、运算符的应用以及基础的输入输出操作。 接下来,我们将对这一章中的核心知识点和可能的习题解答进行深入分析。 ### 1. 变量与数据类型在C++编程中,变量被视为存储数据的媒介。 每一个变量都必须预先声明其数据类型,常见的数据类型有整型(int)、浮点型(float)、双精度浮点型(double)以及字符型(char)。 例如:```cppint age = 25; // 声明一个整型变量age并赋予其初始值25float weight = 70.5f; // 声明一个浮点型变量weight并赋予其初始值70.5char grade = A; // 声明一个字符型变量grade并赋予其初始值A```### 2. 常量与字面量常量指的是不可更改的值,可以通过`const`关键字进行声明。 例如:```cppconst int MAX_SIZE = 100; // 声明一个整型常量MAX_SIZE,其值为100```字面量是指程序中直接书写的值,如`42`、`3.14`或`"Hello"`。 ### 3. 运算符C++提供了多种运算符,涵盖了算术运算符(+,-,*,/,%)、比较运算符(==,!=,<,>,<=,>=)、逻辑运算符(&&,||,!)以及赋值运算符(=,+=,-=,*=,/=,%=)等。 ### 4. 输入与输出在C++中,使用`std::cin`来实现输...
内容概要:本文详细介绍了一个基于C++的仓库存储管理系统的设计与实现,涵盖了项目背景、目标、挑战及解决方案,并系统阐述了整体架构设计、数据库建模、功能模块划分、权限安全、并发控制、数据一致性保障、异常处理与可扩展性等关键内容。通过面向对象编程思想,采用分层架构与模块化解耦设计,结合STL容器、多线程、锁机制等C++核心技术,实现了高效的库存管理功能,包括入库、出库、盘点、调拨、权限控制、日志追踪与智能报表分析。文中还提供了核心类如Inventory(库存)、User(用户权限)、LogEntry(操作日志)及WarehouseManager(主控制器)的代码示例,展示了数据结构设计与关键算法逻辑。; 适合人群:具备C++编程基础,熟悉面向对象设计与基本数据结构的软件开发人员,尤其适合从事企业级管理系统开发或希望深入理解系统架构设计的中级开发者(工作1-3年);也适用于计算机相关专业学生进行课程设计或毕业项目参考; 使用场景及目标:①学习如何使用C++构建复杂业务系统的整体架构与模块划分方法;②掌握高并发、数据一致性、权限控制、异常处理等企业级系统关键技术的实现思路;③理解仓储管理业务流程及其在软件系统中的建模与落地方式;④为开发类似ERP、MES等后台管理系统提供技术原型与设计参考; 阅读建议:此资源不仅提供理论架构与代码片段,更强调系统设计的完整性与工程实践性。建议读者结合代码示例动手实现核心模块,深入理解类之间的关系与交互逻辑,重点关注多线程安全、事务管理与权限校验等难点环节,并尝试扩展功能如对接GUI界面或数据库持久化模块,以全面提升系统开发能力。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值