Complex analysis review 6

本文探讨了复变函数的奇点理论,包括可去奇点、极点及本质奇点,并详细介绍了洛朗级数展开及其在解析延拓中的应用。通过韦尔斯特拉斯定理等,阐述了洛朗级数的性质,以及残数定理在计算积分中的作用。

Laurent Series

The special properties of a complex function is much more determined by its singularity, to study the singularity of a function, we first give a useful theorem that does not hold for real functions.

Theorem 1 (Weierstrass)

Suppose that {fj(z)} are analytic on UC, and n=1fn(z) uniformly converge on any closed subset of U to f(z), then f(z) is analytic on U, and n=1f(k)n(z) converges uniformly to f(k)(z) on any closed subset of U.

For any closed rectifiable simple curve γ on U, we have

γf(z)dz=n=1γfn(z)dz=0.

Then by Morera theorem, f(z) is analytic on U.

If z0U,D¯(z0,r)U, then n=1fn(z) converges to f(z) uniformly on D(z0,r). So for zD(z0,r/2),

supzD¯(z0,r/2)|j=1nf(k)j(z)f(k)(z)|cnsupzD(z0,r)|j1nfj(z)f(z)|.

Then we can get a open covering and use Heine-Borel theorem, the conclusion is true for any closed bounded subset of U.

Now we can define a Laurent series at aC,

n=cn(za)n.

n=0cn(za)n is called the analytic part of the above series, and the remain is called the principle part.
Theorem 2

If f(z) is analytic on V:r<|za|<R,(0r<R<), then f has a unique Laurent expansion on V

f(z)=n=cn(za)n,

where
cn=12πi|ξa|=ρf(ξ)(ξa)n+1dξ(r<ρ<R).

Isolated Singular Point

If f is analytic on a neighbourhood D(a,R){a} of a, then a is called a isolated singular point of f.

From theorem 2, there is a Laurent series of f on 0<|za|<R,

f(z)=n=cn(za)n.

There are three case to be considered.
Removable singular point

limzaf(z) exists and finite, from Riemann theorem, f can be extended to an analytic functon on D(a,R), so cn are all zeros.

Poles of order m

limzaf(z) exists but infinite, then only finitely number of cn are nonzero. Therefore

f(z)=cm(za)m++c1za+n=0cn(za)n.

Since limzaf(z)=, so there is δ>0. such that f(z)0,0<|za|<δ, so on this field, F(z)=1f(z) is analytic and nonzero, moreover limzaF(z)=0. Therefore a is removable singular point of F(z), then
F(z)=(za)mλ(z).

Without lost of generality, we assume that 1/λ(z) is nonzero on |za|<δ. Then it has Taylor expansion
1λ(z)=cm+cm+1(za)+
Essential singular point

limzaf(z) does not exist.

In this case, cn have infinite terms which are nonzero.

Theorem 3 (Weierstrass)

If a is an essential singular point of f, for any given δ>0, and any complex number A, ϵ>0, there is a z on 0<|za|<δ, such that

|f(z)A|<ϵ.

Which means that the values of f near essential singular point is dense in C.

This can be showed easily by prove the converse.

Residual Theorem

Define residual of f, which is analytic on D(z,r){a},

Res(f,a)=12πi|za|=ρf(z)dz(0<ρ<r).

Use Laurent series we can deduce that
Res(f,a)=c1.

If z= is isolated singular point of f, and f is analytic on R<|z|<, then
Res(f,)=c1.

If a(a) is pole of f of order m, then
f(z)=1(za)mg(z),

where g(z) is analytic on a, and g(a)0, then
g(z)=n=01n!g(n)(a)(za)n.

So
Res(f,a)=c1=1(m1)!g(m1)(a)=1(m1)!limzad(m1)dz(m1)[(za)mf(z)].
Theorem 4

If f is analytic on CU{z1,,zn}, and continuous on CU¯{z1,,zn}, U is a simple closed rectifiable curve, then

Uf(z)dz=2πik=1nRes(f,zk).
源码来自:https://pan.quark.cn/s/7a757c0c80ca 《在Neovim中运用Lua的详尽教程》在当代文本编辑器领域,Neovim凭借其卓越的性能、可扩展性以及高度可定制的特点,赢得了程序开发者的广泛青睐。 其中,Lua语言的融入更是为Neovim注入了强大的活力。 本指南将深入剖析如何在Neovim中高效地运用Lua进行配置和插件开发,助你充分发挥这一先进功能的潜力。 一、Lua为何成为Neovim的优选方案经典的Vim脚本语言(Vimscript)虽然功能完备,但其语法结构与现代化编程语言相比显得较为复杂。 与此形成对比的是,Lua是一种精简、轻量且性能卓越的脚本语言,具备易于掌握、易于集成的特点。 因此,Neovim选择Lua作为其核心扩展语言,使得配置和插件开发过程变得更加直观和便捷。 二、安装与设置在Neovim中启用Lua支持通常十分简便,因为Lua是Neovim的固有组件。 然而,为了获得最佳体验,我们建议升级至Neovim的最新版本。 可以通过`vim-plug`或`dein.vim`等包管理工具来安装和管理Lua插件。 三、Lua基础在着手编写Neovim的Lua配置之前,需要对Lua语言的基础语法有所掌握。 Lua支持变量、函数、控制流、表(类似于数组和键值对映射)等核心概念。 它的语法设计简洁明了,便于理解和应用。 例如,定义一个变量并赋值:```lualocal myVariable = "Hello, Neovim!"```四、Lua在Neovim中的实际应用1. 配置文件:Neovim的初始化文件`.vimrc`能够完全采用Lua语言编写,只需在文件首部声明`set runtimepath^=~/.config/nvim ini...
基于STM32 F4的永磁同步电机无位置传感器控制策略研究内容概要:本文围绕基于STM32 F4的永磁同步电机(PMSM)无位置传感器控制策略展开研究,重点探讨在不使用机械式位置传感器的情况下,如何通过算法实现对电机转子位置和速度的精确估算与控制。文中结合STM32 F4高性能微控制器平台,采用如滑模观测器(SMO)、扩展卡尔曼滤波(EKF)或高频注入法等先进观测技术,实现对电机反电动势或磁链的实时估算,进而完成磁场定向控制(FOC)。研究涵盖了控制算法设计、系统建模、仿真验证(可能使用Simulink)以及在嵌入式平台上的代码实现与实验测试,旨在提高电机驱动系统的可靠性、降低成本并增强环境适应性。; 适合人群:具备一定电机控制理论基础和嵌入式开发经验的电气工程、自动化及相关专业的研究生、科研人员及从事电机驱动开发的工程师;熟悉C语言和MATLAB/Simulink工具者更佳。; 使用场景及目标:①为永磁同步电机驱动系统在高端制造、新能源汽车、家用电器等领域提供无位置传感器解决方案的设计参考;②指导开发者在STM32平台上实现高性能FOC控制算法,掌握位置观测器的设计与调试方法;③推动电机控制技术向低成本、高可靠方向发展。; 其他说明:该研究强调理论与实践结合,不仅包含算法仿真,还涉及实际硬件平台的部署与测试,建议读者在学习过程中配合使用STM32开发板和PMSM电机进行实操验证,以深入理解控制策略的动态响应与鲁棒性问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值