新能源时代!看大模型(LLMs)如何助力汽车自动驾驶!

引言

本文主要介绍大模型(LLMs)如何助力汽车自动驾驶,简单来说,作者首先带大家了解大模型的工作模式,然后介绍了自动驾驶大模型的3大应用场景,最后指出自动驾驶大模型将会是未来的发展趋势,只要坚持,国内新能源造车新势力还是很有机会的。本文没有深入讲解算法架构,而是化繁为简,能够让您很快的对自动驾驶大模型有个较为全面的理解。

背景介绍

青霉素发现之前,科学家们的研究方向是在无菌实验室中不断的试错,旨在希望通过传统的医学方法来解决复杂的问题。然而,一个偶然的事件却改变了事件的发展,苏格兰医生弗莱明忘记关闭培养皿,导致培养皿被霉菌污染。这时,弗莱明注意到了一些奇怪的事情:所有靠近水分的细菌都死了,而其他细菌则幸存下来。

其中的水分到底是由什么构成的呢?带着这个一文,弗莱明发现霉菌的主要成分青霉素是一种强大的细菌杀手,从此人类发现青霉素的作用,从而产生了我们今天使用的抗生素。反过来想,如果一个医生按照传统的医学方法在无菌实验室里进行研究,青霉素的发现或许还要晚上很多年,甚至有可能也发现不了。

那么,汽车的自动驾驶是否也有可能出现类似的事情呢?前几年的汽车自动驾驶大多都是基于所谓的“模块化”构建,其主要包括感知模块、定位模块、规划模块、控制模块等,这里的控制模块会根据其他模块的信息来实现汽车的转向、变道等功能。如下图所示:

随着模型框架的发展,研究人员提出了端到端学习,核心思想是用预测转向和加速度的单个神经网络替换每个模块,这同样会引入黑盒问题,尽管如此仍然无法解决自动驾驶问题。那么近两年快速发展的大语言模型能否成为实现自动驾驶的答案呢?为此,本文将探讨大模型如何助力汽车自动驾驶

LLM概述

简单来说,大模型主要包含Token化Transformer文本生成三大概念。其中:

「Token化」:给大模型输入一个文本,返回也是一个文本。但实际上是需要将输入文本转换成Token。那么什么是Token呢?简单来说一个Token可对应一个单词、一个字符、一个短句等。神经网络的输入始终是数字,因此您需要将文本转换为数字;这就是Token化。如下图所示:

「Transformer」:将输入文本转换成一个个的Token之后,就要将其输入到神经网络中,目前大部分的模型的基础网络架构都是Transformer,如下图所示。下图展示的是Encode-Decode架构的模型,不过现在大多数大模型都是Decode架构,例如GPT、LIaMA、ChatGLM等。不管怎样,它们都共享核心 Transformer 模块:多头注意力、层归一化、加法和串联、块、交叉注意力等…

「文本生成」 当上述Token进入Transformer网络中,文本是如何一个一个的生成的呢?如上图,编码器主要是学习输入文本特征并理解上下文,解码器主要是试图生成一个一个的单词,当然在一个一个单词生成的过程中主要依赖概率来进行判断输出。如下图所示:

LLM赋能自动驾驶

基于上面对LLM基本原理的介绍,那么它该如何应用到自动驾驶中呢?上面是将文本数据输入到模型架构中,在此场景下,这里将图像、传感数据(激光雷达点云、3D图像点云等)、算法数据(车道线、障碍物等)等转换成Token作为模型输入,模型架构基本上无需进行变动。输出则是基于我们想要汽车驾驶操作,例如当传感器检测到前面有车,左侧后方无车辆,可以左侧进行变道操作。

以上变道只不过是LLMs任务中的一种,除此之外LLM还能解决哪些自动驾驶任务呢?结合目前国内新能源汽车最新发展趋势,主要涉及这几个方面:

「环境感知」:在此情况下,输入通常是一系列的图像,例如最新的特斯拉取消的激光雷达采用全视觉感知,输出通常是一组对象,例如显示屏中模拟的车道、行人、障碍物等。就大模型而言,其主要有3个核心任务:检测、预测和跟踪。如下图所示,将车辆行驶图像输入到ChatGPT中,可以要求其描述发生的状况:

不单单是ChatGPT,其他的模型同样可以做到,例如 HiLM-D 、MTD-GPT ,有的模型(例如PromptTrack)甚至可以为目标分配唯一的ID标识。

在上图PromptTrack模型中,多个传感器图像会被发送到Encoder-Decoder网络中,通过该网络可以预测对象注释(如3D边界框和注意图),然后结合LLM提示“找到正在右转的车辆”,接着下一个块会找到 3D 边界框定位,并使用二分图匹配算法分配 ID。

「决策规划」 如果大模型在图像中发现了目标,那么它会告诉你面对该种情况该如何操作。这就是任务规划,即根据当前感知来规划从A到B的路径,当前在这块做的较好模型为Talk2BEV。除此之外,为了方便驾驶人更好的理解周围的环境,模型会结合多个视图生成鸟瞰视图。

如上图所示,这并不是纯粹基于“提示”,因为核心目标检测模型仍然是鸟瞰感知,但是LLM被用来“增强”输出,通过建议一些区域,查看特定的地方,并预测路径。

其他模型(例如 DriveGPT)经过训练,将 Perception 的输出发送到 Chat-GPT 并对其进行微调,以直接输出驾驶轨迹。如下图所示:

总结一下,结合上面我们对大模型的理解,这里的大模型(LLMs)输入是Token化的图像或者是感知算法的输出,然后将现有模型(BEV 感知、二分匹配……)与语言提示融合在一起,让大模型来寻找正在移动的车辆,最后,根据不同场景任务,根据输入数据对大模型进行细致的微调即可。

「图像生成」 您听说过 Wayve 的 GAIA-1 模型吗?该架构将图像、动作和文本提示作为输入,然后使用世界模型(对世界及其交互的理解)来生成视频,其模型架构如下所示:

类似地,您可以看到 MagicDrive,它将 Perception 的输出作为输入并使用它来生成场景:

还有一些模型能够根据当前的图像,生成未来可能的场景,例如:Driving Into the Future 、Driving Diffusion。根据这类模型,可以生成很多的汽车应用场景数据,进而可以训练出更好的模型,形成模型都迭代优化闭环

自动驾驶LLM可信吗?

我们都知道,大模型当面对自己不了解的现实知识时,有很大概率会出现模型幻觉。那么将其应用到自动驾驶方面是否同样会出现类似的情况,答案是肯定的。

不过现在对自动驾驶LLM下定论也为时过早!因为,ChatGPT出现才不到一年半的时间,现在的大模型已经可以实现视频生成(例如Sora)、音乐生成(例如:Stable Audio 2.0、Prompt-Singer等),且效果惊人,未来的自动驾驶大模型也将会乘风破浪,成为自动驾驶的主流核心技术。紧跟技术迭代更新,只要坚持,国内新能源造车新势力还是很有机会的。

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

在这里插入图片描述

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
      - L1.4.1 知识大模型
      - L1.4.2 生产大模型
      - L1.4.3 模型工程方法论
      - L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
      - L2.1.1 OpenAI API接口
      - L2.1.2 Python接口接入
      - L2.1.3 BOT工具类框架
      - L2.1.4 代码示例
    • L2.2 Prompt框架
      - L2.2.1 什么是Prompt
      - L2.2.2 Prompt框架应用现状
      - L2.2.3 基于GPTAS的Prompt框架
      - L2.2.4 Prompt框架与Thought
      - L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
      - L2.3.1 流水线工程的概念
      - L2.3.2 流水线工程的优点
      - L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
      - L3.1.1 Agent模型框架的设计理念
      - L3.1.2 Agent模型框架的核心组件
      - L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
      - L3.2.1 MetaGPT的基本概念
      - L3.2.2 MetaGPT的工作原理
      - L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
      - L3.3.1 ChatGLM的特点
      - L3.3.2 ChatGLM的开发环境
      - L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
      - L3.4.1 LLAMA的特点
      - L3.4.2 LLAMA的开发环境
      - L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传优快云,朋友们如果需要可以微信扫描下方优快云官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

在这里插入图片描述

### 大规模机器学习模型在自动驾驶中的应用 #### 行为预测 大规模机器学习模型能够利用大量的历史驾驶数据来预测其他交通参与者的未来行为。这不仅限于车辆之间的互动,还包括行人和其他可能影响行驶环境的因素。通过对大量真实场景的学习,这些模型可以在遇到相似情况时提供更加准确的行为预估,从而提高系统的响应速度和安全性[^1]。 #### 路径规划 借助深度学习算法,特别是卷积神经网络(CNNs),可以实现复杂的城市环境中动态变化的道路条件下的最优路径计算。这种类型的模型会考虑诸如实时路况更新、天气因素以及其他不可预见事件的影响,确保每次都能找到最安全有效的行车线路。 ```python import tensorflow as tf from tensorflow.keras import layers, models def create_path_planning_model(input_shape): model = models.Sequential() model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=input_shape)) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Flatten()) model.add(layers.Dense(64, activation='relu')) model.add(layers.Dense(output_size)) # output size depends on the number of possible actions or directions return model ``` #### 强化学习的应用 强化学习(RL)是一种特别适合用于训练自主代理执行特定任务的方法,在自动驾驶背景下尤其有用。通过不断尝试并调整策略以获得最大奖励值的方式,RL可以帮助优化各种操作流程——比如加速减速时机的选择或是变道动作的设计等。这种方法允许系统自我改进而无需依赖预先编程好的规则集。 #### 集成大语言模型(LLM) 最新的研究表明,将大型语言模型引入到自动驾驶决策过程中具有显著的优势。LLMs不仅可以处理自然语言输入,还可以理解复杂的指令序列,并将其转换为具体的行动指南;此外,它们还能支持多模态信息融合,即同时解析图像、声音等多种感官信号,进而作出更为全面合理的判断[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值