AI智能体研发之路-模型篇(二):DeepSeek-V2-Chat 训练与推理实战

部署运行你感兴趣的模型镜像

一、引言

5月6日私募基金幻方发布DeepSeek-V2,千亿级模型,每百万Tokens仅需1元-2元。5月15日,字节发布白菜价的豆包大模型,5月21日阿里、百度相机大幅下调甚至免费开放自家商用模型接口,大模型价格战正式打响。而被誉为大模型价格屠夫的“DeepSeek-V2”到底是怎么个事儿,是否可以进行训练和推理,今天我们来展开讲一讲。

二、模型简介

2.1 DeepSeek V2模型概述

DeepSeek V2(Moe)是一个基于专家网络(MoE)的大语言模型,是DeepSeek LLM(dense)的升级版本。

  • 主要特点:训练经济、推理高效。
  • 模型尺寸:236B,其中激活参数21B。
  • 上下文长度:128K
  • 相较于他的前一代DeepSeek LLM(67B),节省了42.5%的训练成本,减少了93.3%的KV缓存,最大生成吞吐量提升至5.76倍。

在这里插入图片描述

  • 采用8.1万亿个token的多样化高质量预料预训练,在进行全面的预训练之后,进行监督微调(SFT)以及强化学习(RL),充分发挥模型性能。
  • 官方于5月16日发布了可消费级显卡部署的lite版模型:DeepSeek-V2-Lite,总参数16B,激活函数2.4B,上下文长度32K,降低用户私有化部署成本。

在这里插入图片描述

  • 中文评测集效果对比(官方发布,仅供参考):

在这里插入图片描述

  • 各大厂商价格战之前的商用接口价格对比(2024.5.6)

在这里插入图片描述

就是因为这么一张价格对比表,开启了国产大模型价格之战,“砸我饭碗,都别吃了!”

2.2 DeepSeek V2模型架构

DeepSeek-V2针对attention机制和MoE网络进行创新,保证经济的训练和高效的推理:

  • 对于注意力,设计了MLA(多头潜在注意力),它利用低秩键值联合压缩来消除推理时键值缓存的瓶颈,从而支持高效的推理。
  • 对于前馈网络(FFN),采用 DeepSeekMoE 架构,这是一种高性能 MoE 架构,能够以更低的成本训练更强大的模型。

在这里插入图片描述

模型结构配置(configuration_deepseek.py),这里对涉及网络结构的每个参数进行中文说明。

from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
 
logger = logging.get_logger(__name__)
 
DEEPSEEK_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
class DeepseekV2Config(PretrainedConfig):
 
    model_type = "deepseek_v2"
    keys_to_ignore_at_inference = ["past_key_values"]
 
    def __init__(
        self,
        vocab_size=102400,#深度模型词汇量,默认102400
        hidden_size=4096,#隐层的维度,默认4096
        intermediate_size=11008,#MLP的维度,默认11008
        moe_intermediate_size = 1407,#MOE的维度,默认1407
        num_hidden_layers=30,#在transformer decoder中隐层的数量,默认30
        num_attention_heads=32,#在transformer decoder中每个多头注意力层的头数,默认32
        num_key_value_heads=32,
        #用于实现分组查询注意力的 key_value 头的数量
        #如果`num_key_value_heads=num_attention_heads`,模型将使用多头注意力(MHA),
        #如果`num_key_value_heads=1 时,模型将使用多查询注意 (MQA),否则将使用 GQA。
        #当将多头检查点转换为 GQA 检查点,应构造每个组键和值头。意思是meanpooling该组内的所有original heads
        #详细说明见(https://arxiv.org/pdf/2305.13245.pdf)
        #默认num_key_value_heads=num_attention_heads
        n_shared_experts = None,#moe共享专家数,为None代表dense model稠密模型
        n_routed_experts = None,#moe路由专家数,为None代表dense model稠密模型
        ep_size = 1,
        routed_scaling_factor = 1.0,#路由专家的缩放因子,
        kv_lora_rank = 512,
        q_lora_rank = 1536,
        qk_rope_head_dim = 64,
        v_head_dim = 128,
        qk_nope_head_dim = 128,
        topk_method = 'gready',#moe网络中路由门控的topk选择方法,默认为贪心算法
        n_group = None,#路由专家的组数,默认为None不分组
        topk_group = None,#每个token选中的组数(对于每个 token,确保选中的专家仅在 `topk_group` 组内)
        num_experts_per_tok = None,#选定专家的数量,无表示密集模型
        moe_layer_freq = 1,#MoE 层的频率:每“moe_layer_freq - 1”密集层有一个专家层
        first_k_dense_replace = 0,#浅层中的密集层数(embed->dense->dense->...->dense->moe->moe...->lm_head)。
        norm_topk_prob = False,#是否标准化已路由专家的权重。
        scoring_func = 'softmax',#计算专家权重的方法,默认softmax
        aux_loss_alpha = 0.001,#辅助损失系数。
        seq_aux = True,#是否计算每个单独样本的辅助损失。
        hidden_act="silu",#decoder中非线性激活函数,默认为silu
        max_position_embeddings=2048,#该模型可能用到的最大序列长度,默认为2048,这个参数直接影响模型上下文长度。如果太短,在应用中设置较长的system prompt会让对话被截断。
        initializer_range=0.02,#用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差
        rms_norm_eps=1e-6,#均方根归一化层使用的 epsilon,用于处理浮点数比较时的误差或精度问题,通常是个很小的值。
        use_cache=True,模型是否应该返回最后的key value注意力的值(并非所有模型都使用)。仅当 `config.is_decoder=True` 才有意义
        pad_token_id=None,#填充的token id
        bos_token_id=100000,#token流开始的id,默认为100000
        eos_token_id=100001,#token流结束的id,默认为100001
        pretraining_tp=1,#实验性功能。预训练期间使用的张量并行度等级。此值是确保预训练结果的精确再现性是必要的。
        tie_word_embeddings=False,#是否绑定词嵌入
        rope_theta=10000.0,#RoPE 嵌入的基期,默认为10000
        rope_scaling=None,#包含 RoPE 嵌入的缩放配置的字典。目前支持两种缩放策略:线性和动态。它们的缩放因子必须是大于 1 的浮点数。预期格式为`{"type": 策略名称,"factor": 缩放因子}`。使用此标志时,不要更新`max_position_embeddings` 达到预期的新最大值。
        attention_bias=False,#在自注意力期间是否在查询、键、值和输出投影层中使用偏差,默认False
        attention_dropout=0.0,#注意力概率的丢失率。
        **kwargs,
    ):
        self.vocab_size = vocab_size
        self.max_position_embeddings = max_position_embeddings
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.moe_intermediate_size = moe_intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.n_shared_experts = n_shared_experts
        self.n_routed_experts = n_routed_experts
        self.ep_size = ep_size
        self.routed_scaling_factor = routed_scaling_factor
        self.kv_lora_rank = kv_lora_rank
        self.q_lora_rank = q_lora_rank
        self.qk_rope_head_dim = qk_rope_head_dim
        self.v_head_dim = v_head_dim
        self.qk_nope_head_dim = qk_nope_head_dim
        self.topk_method = topk_method
        self.n_group = n_group
        self.topk_group = topk_group
        self.num_experts_per_tok = num_experts_per_tok
        self.moe_layer_freq = moe_layer_freq
        self.first_k_dense_replace = first_k_dense_replace
        self.norm_topk_prob = norm_topk_prob
        self.scoring_func = scoring_func
        self.aux_loss_alpha = aux_loss_alpha
        self.seq_aux = seq_aux
        # for backward compatibility
        if num_key_value_heads is None:
            num_key_value_heads = num_attention_heads
 
        self.num_key_value_heads = num_key_value_heads
        self.hidden_act = hidden_act
        self.initializer_range = initializer_range
        self.rms_norm_eps = rms_norm_eps
        self.pretraining_tp = pretraining_tp
        self.use_cache = use_cache
        self.rope_theta = rope_theta
        self.rope_scaling = rope_scaling
        self.attention_bias = attention_bias
        self.attention_dropout = attention_dropout
 
        super().__init__(
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            tie_word_embeddings=tie_word_embeddings,
            **kwargs,
        )
  • vocab_size=102400,#词库大小,默认102400,作为参考qwen-72B为152064
  • hidden_size=4096,#隐层的维度,默认4096
  • intermediate_size=11008,#MLP的维度,默认11008
  • moe_intermediate_size = 1407,#MOE的维度,默认1407
  • num_hidden_layers=30,#在transformer decoder中隐层的数量,默认30
  • num_attention_heads=32,#在transformer decoder中每个多头注意力层的头数,默认32,作为参考,qwen-72B为80,baichuan2-13B为40
  • num_key_value_heads=32,
  • #用于实现分组查询注意力的 key_value 头的数量
  • #如果num_key_value_heads=num_attention_heads,模型将使用多头注意力(MHA),
  • #如果`num_key_value_heads=1 时,模型将使用多查询注意 (MQA),否则将使用 GQA。
  • #当将多头检查点转换为 GQA 检查点,应构造每个组键和值头。意思是meanpooling该组内的所有original heads
  • #详细说明见(https://arxiv.org/pdf/2305.13245.pdf)
  • #默认num_key_value_heads=num_attention_heads
  • n_shared_experts = None,#moe共享专家数,为None代表dense model稠密模型
  • n_routed_experts = None,#moe路由专家数,为None代表dense model稠密模型
  • ep_size = 1,
  • routed_scaling_factor = 1.0,#路由专家的缩放因子,
  • kv_lora_rank = 512,kv lora矩阵的秩,默认为512
  • q_lora_rank = 1536,q lora矩阵的秩,默认为1536
  • qk_rope_head_dim = 64,qk rope矩阵头维度,默认为64
  • v_head_dim = 128,v矩阵头维度,默认为128
  • qk_nope_head_dim = 128,qk nope矩阵头维度,默认为128
  • topk_method = ‘gready’,#moe网络中路由门控的topk选择方法,默认为贪心算法
  • n_group = None,#路由专家的组数,默认为None不分组
  • topk_group = None,#每个token选中的组数(对于每个 token,确保选中的专家仅在 topk_group 组内)
  • num_experts_per_tok = None,#选定专家的数量,无表示密集模型
  • moe_layer_freq = 1,#MoE 层的频率:每“moe_layer_freq - 1”密集层有一个专家层
  • first_k_dense_replace = 0,#浅层中的密集层数(embed->dense->dense->…->dense->moe->moe…->lm_head)。
  • norm_topk_prob = False,#是否标准化已路由专家的权重。
  • scoring_func = ‘softmax’,#计算专家权重的方法,默认softmax
  • aux_loss_alpha = 0.001,#辅助损失系数。
  • seq_aux = True,#是否计算每个单独样本的辅助损失。
  • hidden_act=“silu”,#decoder中非线性激活函数,默认为silu
  • max_position_embeddings=2048,#该模型可能用到的最大序列长度,默认为2048,这个参数直接影响模型上下文长度。如果太短,在应用中设置较长的system prompt会让对话被截断。
  • initializer_range=0.02,#用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差
  • rms_norm_eps=1e-6,#均方根归一化层使用的 epsilon,用于处理浮点数比较时的误差或精度问题,通常是个很小的值。
  • use_cache=True,模型是否应该返回最后的key value注意力的值(并非所有模型都使用)。仅当 config.is_decoder=True 才有意义
  • pad_token_id=None,#填充的token id
  • bos_token_id=100000,#token流开始的id,默认为100000
  • eos_token_id=100001,#token流结束的id,默认为100001
  • pretraining_tp=1,#实验性功能。预训练期间使用的张量并行度等级。此值是确保预训练结果的精确再现性是必要的。
  • tie_word_embeddings=False,#是否绑定词嵌入
  • rope_theta=10000.0,#ROPE旋转位置编码里theta的空间,qwen-72B为1000000。ROPE是一种位置编码算法,通过优化的矩阵乘法方式为Q/K引入位置信息,使得token能够在Attention计算中感知到相对位置信息。
  • rope_scaling=None,#包含 RoPE 嵌入的缩放配置的字典。目前支持两种缩放策略:线性和动态。它们的缩放因子必须是大于 1 的浮点数。预期格式为{"type": 策略名称,"factor": 缩放因子}。使用此标志时,不要更新max_position_embeddings 达到预期的新最大值。
  • attention_bias=False,#在自注意力期间是否在查询、键、值和输出投影层中使用偏差,默认False
  • attention_dropout=0.0,#注意力概率的丢失率。

Tips:

之前在做深度学习推荐系统的时候,也经常接触到attention机制和MoE专家网络这两个模型网络,采用attention机制学习item或user序列的潜在关系,采用MoE专家网络做推荐系统中多场景/多目标网络的主模型,较为知名的有MMoE网络和PLE网络,通过共享多个专家网络,提升模型的多场景/多目标的关联学习能力。

三、训练与推理

3.1 DeepSeek V2模型训练

由于机器资源限制,这里基于QLoRA指令微调(SFT)DeepSeek V2的lite版(DeepSeek-V2-Lite-Chat),使用之前文章介绍的LLaMA-Factory框架。

国内网络环境下LLaMA-Factory部署:AI智能体研发之路-模型训练篇(一):大模型训练框架LLaMA-Factory在国内网络环境下的安装、部署及使用_llama训练框架-优快云博客

SFT训练启动代码:

CUDA_VISIBLE_DEVICES=1 llamafactory-cli train \
    --stage sft \
    --do_train True \
    --model_name_or_path deepseek-ai/deepseek-moe-16b-chat \
    --finetuning_type lora \
    --quantization_bit 4 \
    --template deepseek \
    --flash_attn auto \
    --dataset_dir data \
    --dataset oaast_sft_zh \
    --cutoff_len 4096 \
    --learning_rate 5e-05 \
    --num_train_epochs 5.0 \
    --max_samples 100000 \
    --per_device_train_batch_size 2 \
    --gradient_accumulation_steps 8 \
    --lr_scheduler_type cosine \
    --max_grad_norm 1.0 \
    --logging_steps 5 \
    --save_steps 100 \
    --warmup_steps 0 \
    --optim adamw_torch \
    --packing False \
    --report_to none \
    --output_dir saves/DeepSeek-MoE-16B-Chat/lora/train_2024-05-23-deepseek-v2 \
    --fp16 True \
    --lora_rank 16 \
    --lora_alpha 16 \
    --lora_dropout 0 \
    --lora_target q_proj,v_proj \
    --plot_loss True

其中:

  • quantization_bit = 4 ,int4量化,sft根据惯例fp16训练大概需要模型尺寸2的GPU,int4需要模型尺寸0.75的GPU,这里是16B,int4大概需要16*0.75=12G的GPU资源,如果fp16需要32G,对于V100显卡,单卡32G基本很难启动。
  • template = deepseek,template采用deepseek的,LLaMA Factory框架针对当下国内外主流模型都进行了template适配,训练和推理记得设置。
  • cutoff_len = 4096,上下文长度这里先设置4096,对于agent开发,特别是较长的system prompt,这里一定要尽量大,至少要4096。
  • per_device_train_batch_size = 2,每个设备训练的batich size,这里设置为2,不要太大
  • gradient_accumulation_steps = 8,

启动后,webui、docker logs或者save目录中的running_logs日志文件可以查看日志状态。

在这里插入图片描述

deepseek v2的SFT微调训练启动后要加载很久,需要确保服务器资源充足,并且要有足够的耐心。

对于以上参数,5轮迭代需要7小时12分钟,耐心等待叭。

在这里插入图片描述

训练完毕后,可以看到loss明显收敛,各位可以通过调整自己的数据样本集训练私有化模型。

在这里插入图片描述

3.2 DeepSeek V2模型推理

这里采用LLaMA Factory WebUI的chat部分进行模型推理测试,由于资源限制智能采用int4量化后进行推理测试,大概占用了12G显存。框架支持RoPE插值方法,可以配置线性插值和动态插值,以及支持flashattn2加速和unsloth加速。

在这里插入图片描述

从对话效果来看,int4的模型还是存在一定幻觉,比如问“你支持工具调用嘛”,模型回答“支持工具调用,但不具备调用工具的能力”。逻辑上产生错误。

但在个人实际工作中,官方完整版的deepseek-v2-chat(236B)还是非常好用的,对于agent的开发,回复效果上强于gpt3.5,回复速度上快于gpt4.0。接入dify平台上直接就可以使用,由于采用OpenAI兼容的API规范,配置和使用过程都很流畅。最重要的是,真便宜!测试用了6万token才花费了0.07元!

在这里插入图片描述

四、总结

本文首先针对deepseek-v2-chat这个大模型价格屠夫的模型特点和技术架构进行介绍,之后以LLaMA-factory为训练和推理框架,进行SFT微调训练和推理测试。

deepseek-v2-chat巧妙的将attention注意力机制和MoE网络架构与大模型相结合,通过模型算法与架构的升级,提升了推理和训练效率,最终呈现的就是成本的优化和商业市场价值的转化。是一个典型的通过技术创新直接创造商业价值的案例。respect。

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉优快云大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉优快云大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

您可能感兴趣的与本文相关的镜像

Stable-Diffusion-3.5

Stable-Diffusion-3.5

图片生成
Stable-Diffusion

Stable Diffusion 3.5 (SD 3.5) 是由 Stability AI 推出的新一代文本到图像生成模型,相比 3.0 版本,它提升了图像质量、运行速度和硬件效率

<think>嗯,用户这次明确想了解DeepSeekChatV2Lite的具体信息,但结合对话历史看有点微妙——系统之前提供的三个引用都是关于DeepSeekV2系列模型的技术报告和部署方案,而用户现在突然跳转到Lite版本查询。用户可能混淆了版本命名,或者看到了非官方渠道的宣传名称。仔细回忆下,在DeepSeek官方技术博客[^2]里其实提到过:V2完整版包含DeepSeekMoE架构,而"Lite"这个称呼从未出现在2024年6月前的官方文档中。用户或许是被第三方简化部署方案误导了?值得提醒用户核实来源。考虑到用户连续两次追问模型信息,深层需求可能是想找轻量化部署方案。上次回答里引用[3]的Kubernetes配置其实就适配任意V2变体,这次要更突出这点。另外需要明确区分:目前公开的只有标准版V2/V2.5,所谓Lite可能是社区自行裁剪的版本。技术细节上值得补充两点:1)即便标准版V2也能通过量化压缩显存占用,例如AWQ4bit量化后能在6GB显存运行;2)如果用户坚持找Lite,可以建议关注GitHub社区项目。但务必强调非官方性质,避免支持承诺。最后生成的问题要覆盖版本差异性和部署实践,特别是用户表现出对资源占用的敏感(特意提到下载和使用指南),后续可以延伸讨论量化技术和API成本优化。</think> 根据现有公开资料(截至2025年3月),**DeepSeek Chat V2 Lite** 并未作为独立官方版本正式发布。不过可基于 **DeepSeek-V2/V2.5** 架构和部署逻辑,为你梳理相关的轻量化资源使用指南: --- ### 🔍 DeepSeek Chat V2 Lite 简介 通常「Lite」版指 **轻量化模型变体**,可能是通过模型剪裁、量化压缩(如4-bit/8-bit)或蒸馏得到的推理速度更快、资源占用更低的版本。DeepSeek-V2 原生支持专家混合架构(MoE),默认即具备高效推理特性,而「Lite」可能是在此基础上针对移动端/边缘计算进一步优化的分支版本[^2][^3]。 --- ### 📚 核心特性 & 资源获取 #### ✅ 轻量化技术实现方式 1. **量化压缩(Quantization)** - 支持权重量化为 Int4 / Int8 格式,降低显存占用 - 兼容 [GGUF](https://huggingface.co/deepseek-ai) / [AWQ](https://github.com/mit-han-lab/llm-awq) 格式 - **显存降低幅度**:约原模型的 1/3 ~ 1/5,例如7B参数模型量化后可在8GB显存运行[^3] 2. **模型蒸馏(Distillation)** -大模型中蒸馏出保留核心能力的小型模型(如从67B蒸馏出1.8B) 3. **动态路由机制(MoE)** - DeepSeek-V2 原生采用 MoE,仅激活部分专家(e.g., 每Token激活2/16专家),实现性能资源平衡[^2] --- ### ⬇️ 下载部署指南 #### 推荐资源渠道: | 资源类型 | 地址 | 说明 | |-------------------|----------------------------------------------------------------------|----------------------------------| | 🤗 Hugging Face模型 | [https://huggingface.co/deepseek-ai](https://huggingface.co/deepseek-ai) | 提供 DeepSeek-V2-Base 和 V2-Chat | | GitHub官方库 | [https://github.com/deepseek-ai](https://github.com/deepseek-ai) | 部署脚本、推理加速方案 | | 量化版本社区维护 | Hugging Face 搜索 `DeepSeek-V2-4bit`/`GGUF` | 社区优化版本(非官方) | #### 本地部署流程示例(GPU + vLLM): ```bash # 安装依赖 pip install vllm transformers # 启动推理服务(需NVIDIA GPU) python -m vllm.entrypoints.openai.api_server \ --model deepseek-ai/deepseek-v2-chat \ --quantization awq \ # 或调整其他参数 --max-model-len 8192 ``` --- ### 📱 Lite端使用建议 | 平台 | 部署方案 | 工具推荐 | |-------------|----------------------------------|----------------------------| | Android/iOS | Llama.cpp + GGUF量化模型 | MLC-LLM / llama.cpp App | | Web端 | Lite版API(需自建后端) | FastAPI + Quantized Model | | 云端轻服务 | 结合HPA自动扩缩容(见下方配置) | Kubernetes + Prometheus | ### K8s显存弹性扩缩(参考引用[^3]): ```yaml # HPA配置示例:按显存使用扩容 apiVersion: autoscaling/v2 kind: HorizontalPodAutoscaler spec: metrics: - type: Pods pods: metric: name: DCGM_FI_DEV_FB_USED target: type: AverageValue averageValue: 1500Mi # 设置更低显存阈值适配Lite版 ``` --- ### ❓相关问题(FAQs) #### 1. DeepSeek-V2 Lite适合在什么设备上运行? > 答:在量化后(如4-bit)可部署至 **消费级显卡(RTX 3060+/8GB显存)**、树莓派5、手机端(iOS/Android via MLC)等边缘设备。 #### 2. 如何调整Lite版的上下文长度? > 通过 `--max-model-len` 参数限制(默认8192),或使用 `positional-encoding-scaling` 技术扩展至32K[^2]。 #### 3. V2-Lite模型精度是否明显下降? > 量化版本在多轮对话和代码场景表现稳定,但在数学证明、超长文档解析等任务上建议使用原模型[^1][^2]。 --- 💡**提示**:目前官方未直接命名「V2 Lite」,可密切关注 [DeepSeek GitHub](https://github.com/deepseek-ai) 或社区项目获取最新轻量化进展。如需具体配置支持,欢迎提供设备/场景细节进一步解答!🚀
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值