361. 观光奶牛(小数二分,spfa判断正环,01分数规划)

361. 观光奶牛 - AcWing题库

给定一张 L 个点、P 条边的有向图,每个点都有一个权值 f[i],每条边都有一个权值 t[i]。

求图中的一个环,使“环上各点的权值之和”除以“环上各边的权值之和”最大。

输出这个最大值。

注意:数据保证至少存在一个环。

输入格式

第一行包含两个整数 L 和 P。

接下来 L 行每行一个整数,表示 f[i]。

再接下来 P 行,每行三个整数 a,b,t[i],表示点 a 和 b 之间存在一条边,边的权值为 t[i]。

输出格式

输出一个数表示结果,保留两位小数。

数据范围

2≤L≤1000
2≤P≤5000,
1≤f[i],t[i]≤1000

输入样例:
5 7
30
10
10
5
10
1 2 3
2 3 2
3 4 5
3 5 2
4 5 5
5 1 3
5 2 2
输出样例:
6.00

解析: 

所有在图论问题中形如:一堆的和除以一堆的和,求这个结果的最大值的问题,我们称之为01分数规划”

一般此类为题我们同有一种通用的做法———二分。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值