Minimum Inversion Number
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 17260 Accepted Submission(s): 10496
Problem Description
The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
Input
The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.
Output
For each case, output the minimum inversion number on a single line.
Sample Input
10 1 3 6 9 0 8 5 7 4 2
Sample Output
16
Author
CHEN, Gaoli
Source
题意:给出一个数组,可以将数组的第一个数放到数组的最后一个数的后面,求经过此种操作后形成数组的最小逆序数。
思路:构建一棵线段树,大区间为[0,n-1],按照数组的顺序插入各个数,按照样例,第一个插入的为1,则将[1,1]置为1,然后向上跟新,然后查询[2,9]区间内已经插入的数的个数,(即比1大且在数组中顺序在1之前的数,1的逆序数),以此类推。
当得到一种数组的逆序数后,可以通过公式 ans = ans + (n - 1 - a[i]) + a[i]来求得最小逆序数。
代码如下:
#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
int a[5005];
struct node
{
int l,r,sum;
}t[20020];
int ss;
void build_tree(int l, int r, int k)
{
if(l == r)
{
t[k].l = l;
t[k].r = r;
t[k].sum = 0;
return;
}
int mid = (l + r) / 2;
t[k].l = l;
t[k].r = r;
t[k].sum = 0;
build_tree(l, mid, 2 * k);
build_tree(mid + 1, r, 2 * k + 1);
}
void insert_tree(int i, int num, int k)
{
if(t[k].l == t[k].r && t[k].l == i)
{
t[k].sum = num;
return ;
}
int mid = (t[k].l + t[k].r) / 2;
if(i <= mid)insert_tree(i, num, 2 * k);
else insert_tree(i, num, 2 * k + 1);
t[k].sum = t[2 * k].sum + t[2 * k + 1].sum;
}
void search_tree(int l, int r, int k)
{
if(t[k].l == l && t[k].r == r)
{
ss += t[k].sum;
return ;
}
int mid = (t[k].l + t[k].r) / 2;
if(r <= mid) search_tree(l, r, 2 * k);
else if(l > mid) search_tree(l, r, 2 * k + 1);
else
{
search_tree(l, mid, 2 * k);
search_tree(mid + 1, r, 2 * k + 1);
}
}
int main()
{
int n, i, j, ans;
while(scanf("%d", &n) != EOF)
{
ans = 0;
build_tree(0,n-1,1);
for(i = 0; i < n; i++)
{
scanf("%d", &a[i]);
insert_tree(a[i], 1, 1);//每个数插入的值都为1
ss = 0;
if(a[i] != n - 1)//最大的数的逆序数必为0
search_tree(a[i] + 1, n - 1, 1);
ans += ss;//加上每个数的逆序数
}
int minn = ans;
for(i = 0; i < n; i++)
{
ans = ans + (n - 1 - a[i]) - a[i];
if(ans < minn)
minn = ans;
}
cout << minn <<endl;
}
return 0;
}
本文介绍了一种求解给定序列通过特定操作后形成的序列的最小逆序数的方法。利用线段树进行区间更新与查询,实现了高效计算。文章详细阐述了算法思路及其实现代码。
293

被折叠的 条评论
为什么被折叠?



