Transformer实战(17)——微调Transformer语言模型进行多标签文本分类

Transformer实战(17)——微调Transformer语言模型进行多标签文本分类

0. 前言

单标签分类不同,多标签分类要求模型能够为同一文本分配多个相关标签,这在新闻分类、文献标注、内容推荐等场景中尤为重要。本节以 PubMed 数据集为例,微调 DistilBERT 模型,介绍多标签文本分类的完整实现流程。探讨如何从数据预处理、模型微调、损失函数选择到性能评估,构建一个高效的多标签分类模型,并针对标签不均衡问题提出优化策略。

1. 多标签文本分类

我们已经学习了如何解决多类别文本分类问题,在该问题中每个文本仅分配一个标签。在本节中,我们将讨论多标签分类问题,在该问题中一个文本可以有多个标签。这在自然语言处理 (Natural Language Processing, NLP) 应用中非常常见,例如新闻分类,一条新闻可能同时与体育和健康相关。下图展示了多标签分类的概念:

多标签分类

2. 数据加载与处理

在本节中,我们将深入

评论 173
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值