PyTorch生成式人工智能(22)——GLOW详解与实现

0. 前言

GLOW (Generative Flow) 是一种基于归一化流的生成模型,通过在每个流步骤中引入可逆的 1 × 1 卷积层,替代了 RealNVP 中通道翻转或固定置换的策略,从而使通道重排更具表达力,同时保持雅可比行列式和逆变换的高效计算能力。本文首先回顾归一化流与 RealNVP 的基本原理,接着剖析 GLOW 的四大核心模块:ActNorm、可逆 1×1 卷积、仿射耦合层和多尺度架构,随后基于 PyTorch 实现 GLOW 模型,并在 CIFAR-10 数据集上进行训练。

1. 归一化流模型

1.1 归一化流与变换公式

在本节中,我们首先简要回顾归一化流模型的核心原理,归一化流利用可逆映射 f f

评论 28
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值