PyTorch生成式人工智能(29)——基于Transformer生成音乐

0. 前言

我们已经学习了如何使用 MuseGAN 生成逼真的多音轨音乐MuseGAN 将一段音乐视为一个类似图像的多维对象,并生成与训练数据集中相似的音乐作品。在本节中,将采另一种方法来创作音乐,将音乐视为一系列音乐事件。具体来说,将开发一个类似 GPT 的模型,基于序列中所有先前事件来预测下一个音乐事件。本节将创建的音乐 Transformer 拥有 2016 万个参数,足以捕捉不同音符在音乐作品中的长期关系,同时也可以在合理的时间内完成训练。
我们将使用 Maestro 钢琴音乐作为训练数据,MIDI 文件转换为音音符序列,类似于自然语言处理 (Natural Language Processing, NLP) 中的原始文本数据。接着,将这些音符拆分为小片段,称为音乐事件,这类似于 NLP 中的词元 (token)。由于神经网络只能接受数值输入,需要把每个唯一事件词元映射到一个索引。这样,训练数据中的音乐片段就被转换为一系列索引,用于输入神经网络。
经过训练的音乐 Transformer 能够生成逼真的音乐,模仿训练数据集中的风格。此外,与 MuseGAN 生成的音乐不同,我们可以通过调整温度参数来缩放预测的对数 (

评论 102
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值