PyTorch深度学习实战(29)——变分自编码器(Variational Autoencoder, VAE)

本文介绍了变分自编码器(VAE)的概念,探讨了自编码器的局限性,并详细阐述了VAE的工作原理、KL散度和重参数化技巧。通过PyTorch实现VAE,展示其在生成新图像方面的优势,适用于图像生成、语音和自然语言处理等领域的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0. 前言

变分自编码器 (Variational Autoencoder, VAE) 是一种生成模型,结合了自编码器和概率模型的思想,通过学习输入数据的潜分布,能够生成新的样本。与传统的自编码器不同,变分自编码器引入了概率建模的思想,并通过编码器和解码器之间的随机性来实现生成过程。编码器将输入数据映射到潜空间中的概率分布,假设潜变量是从多元正态分布中采样得到的,解码器则将从潜空间采样得到的潜在变量映射回原始数据空间,并生成新的样本。本节中,将介绍变分自编码器的基本概念,并使用 PyTorch 实现变分自编码器生成新图像。

1. 变分自编码器

变分自编码器 (Variational Auto-Encoders, VAE) 是一种基于变分贝叶斯 (Variational Bayes, VB) 推断的生成式网络架构,与自编码器通过数值的方式描述潜空间不同,VAE 以概率分布的形式描述潜空间,使数据生成成为可能。

1.1 自编码器的局限性

相似的图像会被分组到同一集群中,使用自编码器可以重建(解码)属于给定集群的潜变量。但是,如果潜变量位于两个集群之间时,使用自编码器无法保证会生成逼真图像,

评论 93
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值