💥💥💥💥💥💥💥💥💞💞💞💞💞💞💞💞💞Matlab武动乾坤博客之家💞💞💞💞💞💞💞💞💞💥💥💥💥💥💥💥💥
🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀
🔊博主简介:985研究生,Matlab领域科研开发者;
🚅座右铭:行百里者,半于九十。
🏆代码获取方式:
优快云 Matlab武动乾坤—代码获取方式
更多Matlab路径规划仿真内容点击👇
①Matlab路径规划(进阶版)
⛳️关注优快云 Matlab武动乾坤,更多资源等你来!!
⛄一、哈里斯鹰算法简介
HHO算法用数学公式来模拟现实中哈里斯鹰在不同机制下捕捉猎物的策略.在HHO中,哈里斯鹰是候选解,猎物随迭代逼近最优解.HHO算法包括两个阶段:全局探索阶段、局部开采阶段。
1 全局探索阶段
在这一阶段中,哈里斯鹰处于等待状态,仔细检查和监控搜索空间[lb,ub]以发现猎物.它根据两种策略在随机的地方寻找猎物,迭代时以概率q进行位置更新,数学表达式为:
式中,Xt+1和Xt分别为哈里斯鹰第t+1次和第t次迭代时的位置,Xrabbit, t表示猎物第t次迭代时的位置,q和r1,r2,r3,r4是区间(0,1)内的随机数字,lb是搜索空间的下界,ub是搜索空间的上界,Xrand, t表示第t次迭代时哈里斯鹰的随机位置,Xm,t表示第t次迭代时哈里斯鹰的平均位置,公式如下:
2 过渡阶段
任何群智能算法的精确运行,需要保持探索和开采之间适当的平衡.HHO通过猎物的能量方程实现从探索到开采的过渡,其模型如下:
式中,E表示猎物逃跑的能量,E0是猎物能量的初始状态,公式为E0=2*rand-1,rand是(0,1)之间的随机数字,T为最大迭代次数,t为当前迭代次数.当|E|≥1时,哈里斯鹰算法将执行全局探索;否则,HHO算法进入局部开采.
##3 局部开采阶段
在这一阶段,哈里斯鹰根据前一阶段的检测执行突袭攻击预期猎物,而猎物试图逃离危险.根据猎物的逃跑行为和哈里斯鹰的追逐策略,HHO算法提出了四种可能的策略来模拟攻击行为.用λ表示猎物成功逃脱的概率,当λ<0.5时,猎物逃脱成功;当λ≥0.5时,猎物逃脱失败.用参数E模拟哈里斯鹰软或硬的围攻策略.当|E|≥0.5时,执行软围攻;否则,执行硬围攻.
Case1:软围攻.当|E|≥0.5,λ≥0.5时,猎物有足够的能量且以跳跃的方式逃脱围捕,而哈里斯鹰会逐渐消耗猎物的能量,然后选择最佳的位置突袭俯冲逮捕猎物.更新位置的方程如下:
式中,Xt是迭代时猎物与哈里斯鹰的位置之差,J=2(1-r5)表示猎物逃跑过程中的随机跳跃,r5是介于0到1之间的随机数字.
Case2:硬围攻.当|E|<0.5,λ≥0.5时,猎物筋疲力尽,哈里斯鹰选择迅速突袭.位置更新如下:
Case3:累速俯冲式软围攻.当|E|≥0.5,λ<0.5时,猎物有足够的能量E逃跑,哈里斯鹰在突袭之前会建立一个软围攻.为了模拟猎物的逃跑模式和跳跃动作,将levy函数LF集成在HHO算法中.更新位置的策略为:
式中,D为问题维度,S为D维随机行向量.
Case4:累速俯冲式硬围攻.当|E|<0.5,λ<0.5时,猎物能量E低,哈里斯鹰在突袭前构建硬围攻捕捉猎物,位置更新如下:
HHO算法用猎物能量E和因子λ调节哈里斯鹰和猎物(兔子)之间的四种围捕机制,来实现优化求解问题。
⛄二、部分源代码
⛄三、运行结果
⛄四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1]占家豪.改进哈里斯鹰优化算法在路径寻优中的应用[J].杭州电子科技大学
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
🍅 仿真咨询
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合