Hdu6063 RXD and math(2017多校第3场)

RXD and math

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others)
Total Submission(s): 532    Accepted Submission(s): 287


Problem Description
RXD is a good mathematician.
One day he wants to calculate:
i=1nkμ2(i)×nki

output the answer module  109+7 .
1n,k1018
μ(n)=1(n=1)

μ(n)=(1)k(n=p1p2pk)

μ(n)=0(otherwise)

p1,p2,p3pk  are different prime numbers
 

Input
There are several test cases, please keep reading until EOF.
There are exact 10000 cases.
For each test case, there are 2 numbers  n,k .
 

Output
For each test case, output "Case #x: y", which means the test case number and the answer.
 

Sample Input
  
  
10 10
 

Sample Output
  
  
Case #1: 999999937
 

Source

——————————————————————————————————
题目的意思是给你这个公式,给出n,k计算公式和
思路:比赛时u没给出来,队友研究了下莫比乌斯函数告诉我,我尝试达标找规律,发现答案就是n^k,快速幂解决
感慨高中生的不讲道理,一个简单的式子可以包装到这么复杂
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <vector>
#include <bitset>
#include <functional>

using namespace std;

#define LL long long
const int INF = 0x3f3f3f3f;
const LL mod=1000000007;

LL n,k;

LL mypow(LL a,LL b)
{
    LL ans=1;
    a%=mod;
    while(b)
    {
        if(b&1) {ans*=a;ans%=mod;}
        a=(a*a)%mod;
        b>>=1;
    }
    return ans;
}

int main()
{
    int cas=0;
    while(~scanf("%lld%lld",&n,&k))
    {
        printf("Case #%d: %lld\n",++cas,mypow(n,k));
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值