RXD and math
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Others)Total Submission(s): 532 Accepted Submission(s): 287
Problem Description
RXD is a good mathematician.
One day he wants to calculate:
output the answer module 109+7 .
1≤n,k≤1018
p1,p2,p3…pk are different prime numbers
One day he wants to calculate:
∑i=1nkμ2(i)×⌊nki−−−√⌋
output the answer module 109+7 .
1≤n,k≤1018
μ(n)=1(n=1)
μ(n)=(−1)k(n=p1p2…pk)
μ(n)=0(otherwise)
p1,p2,p3…pk are different prime numbers
Input
There are several test cases, please keep reading until EOF.
There are exact 10000 cases.
For each test case, there are 2 numbers n,k .
There are exact 10000 cases.
For each test case, there are 2 numbers n,k .
Output
For each test case, output "Case #x: y", which means the test case number and the answer.
Sample Input
10 10
Sample Output
Case #1: 999999937
Source
——————————————————————————————————
题目的意思是给你这个公式,给出n,k计算公式和
思路:比赛时u没给出来,队友研究了下莫比乌斯函数告诉我,我尝试达标找规律,发现答案就是n^k,快速幂解决
感慨高中生的不讲道理,一个简单的式子可以包装到这么复杂
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <vector>
#include <bitset>
#include <functional>
using namespace std;
#define LL long long
const int INF = 0x3f3f3f3f;
const LL mod=1000000007;
LL n,k;
LL mypow(LL a,LL b)
{
LL ans=1;
a%=mod;
while(b)
{
if(b&1) {ans*=a;ans%=mod;}
a=(a*a)%mod;
b>>=1;
}
return ans;
}
int main()
{
int cas=0;
while(~scanf("%lld%lld",&n,&k))
{
printf("Case #%d: %lld\n",++cas,mypow(n,k));
}
return 0;
}