Problem Description
RXD is a good mathematician.
One day he wants to calculate:
output the answer module 109+7 .
1≤n,k≤1018
p1,p2,p3…pk are different prime numbers
One day he wants to calculate:
∑i=1nkμ2(i)×⌊nki−−−√⌋
output the answer module 109+7 .
1≤n,k≤1018
μ(n)=1(n=1)
μ(n)=(−1)k(n=p1p2…pk)
μ(n)=0(otherwise)
p1,p2,p3…pk are different prime numbers
Input
There are several test cases, please keep reading until EOF.
There are exact 10000 cases.
For each test case, there are 2 numbers n,k .
There are exact 10000 cases.
For each test case, there are 2 numbers n,k .
Output
For each test case, output "Case #x: y", which means the test case number and the answer.
Sample Input
10 10
Sample Output
Case #1: 999999937
Source
规律 :求 n的k次方然后取模,别问我怎么知道的,我是猜的。摊手、、、、、、
#include<bits/stdc++.h>
#define mod 1000000007
#define mod 1e9+7
using namespace std;
long long pow(long long a,long long b)
{
long long int ans = 1,base = a;
while(b!=0)
{
if(b&1){
base%=(long long)mod;
ans%=(long long)mod;
ans *= base;
ans%=(long long)mod;
}
base%=(long long)mod;
base *= base;
base%=(long long)mod;
b>>=1;
}
return ans;
}
int main()
{
long long int n,k;
int t=0;
while(~scanf("%lld %lld",&n,&k)){
t++;
printf("Case #%d: ",t);
printf("%lld\n",pow(n,k));
}
return 0;
}