LOXL1与TGF-β相关分子作用路径的预测

盆腔器官脱垂(POP)是一种盆底支持结构功能障碍性疾病,而现有的手术手段并不能根治这种疾病,因此探究POP 的发病机制是一项比较有意义的研究。已有的资料表明,类氨酰氧化酶——LOXL1 的敲除能够导致小鼠在分娩之后发生POP。同时TGF-β 的表达量高低与POP 的严重程度相关。在已经掌握资料的基础上,我们对网络上现有的海量微阵列数据进行了查找,选取了其中两个数据集进行分析。我们通过数据挖掘的方式对于POP 相关的生物芯片进行相关性分析以及聚类,最后建立生物学网络。我们发现TGF-β 同时通过smad 与非smad 通路调控LOXL1 的表达,而LOXL1 在细胞外基质参与黏着斑的形成、弹性纤维与胶原的交联等等。

阅读原文

Running data.table in English; package support is available in English only. When searching for online help, be sure to also check for the English error message. This can be obtained by looking at the po/R-<locale>.po and po/<locale>.po files in the package source, where the native language and English error messages can be found side-by-side. You can also try calling Sys.setLanguage('en') prior to reproducing the error message. ********** 载入程序包:‘data.table’ The following object is masked from ‘package:SummarizedExperiment’: shift The following object is masked from ‘package:GenomicRanges’: shift The following object is masked from ‘package:IRanges’: shift The following objects are masked from ‘package:S4Vectors’: first, second The following objects are masked from ‘package:lubridate’: hour, isoweek, mday, minute, month, quarter, second, wday, week, yday, year The following objects are masked from ‘package:dplyr’: between, first, last The following object is masked from ‘package:purrr’: transpose > library(ggpubr) > library(glmGamPoi)# 提高doubletFinder速度 载入程序包:‘glmGamPoi’ The following object is masked from ‘package:dplyr’: vars The following object is masked from ‘package:ggplot2’: vars > getwd() [1] "C:/Users/lenovo/Documents" > setwd("D:/FQY_NELL1") > options(future.globals.maxSize = 4 * 1024^3) # 设置为 4GB > set.seed(123) > dirs = c('./data/shNELL1_1/', + './data/shNELL1_2/', + './data/zipctl_1/', + './data/zipctl_2/') > ## SoupX #### > loadSoupX <- function(dir){ + tod <- Read10X(paste(dir, '/raw_feature_bc_matrix', sep = ''), gene.column = 1) + toc <- Read10X(paste(dir, '/filtered_feature_bc_matrix', sep = ''), gene.column = 1) + tod <- tod[rownames(toc),] + + all <- toc + all <- CreateSeuratObject(all) + all <- NormalizeData(all, normalization.method = "LogNormalize", scale.factor = 10000) + all <- FindVariableFeatures(all, selection.method = "vst", nfeatures = 3000) + all.genes <- rownames(all) + all <- ScaleData(all, features = all.genes) + all <- RunPCA(all, features = VariableFeatures(all), npcs = 40, verbose = F) + all <- FindNeighbors(all, dims = 1:30) + all <- FindClusters(all, resolution = 0.5) + all <- RunUMAP(all, dims = 1:30) + matx <- all@meta.data + sc = SoupChannel(tod, toc) + sc = setClusters(sc, setNames(matx$seurat_clusters, rownames(matx))) + + print(paste(dir, 'SOUPX Finish!', sep = ' ')) + return(sc) + } > Soupx_list <- list() > for (i in 1:length(dirs)) { + sc = loadSoupX(dirs[i]) + sc = autoEstCont(sc) + out = adjustCounts(sc) + Soupx_list[i] <- out + print(paste(i, 'is over', sep = ' ')) + } Normalizing layer: counts Performing log-normalization 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Finding variable features for layer counts Calculating gene variances 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Calculating feature variances of standardized and clipped values 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Centering and scaling data matrix |==============================================================| 100% Computing nearest neighbor graph Computing SNN Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck Number of nodes: 9191 Number of edges: 367645 Running Louvain algorithm... 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Maximum modularity in 10 random starts: 0.9424 Number of communities: 22 Elapsed time: 0 seconds 警告: The default method for RunUMAP has changed from calling Python UMAP via reticulate to the R-native UWOT using the cosine metric To use Python UMAP via reticulate, set umap.method to 'umap-learn' and metric to 'correlation' This message will be shown once per session 17:01:34 UMAP embedding parameters a = 0.9922 b = 1.112 17:01:34 Read 9191 rows and found 30 numeric columns 17:01:34 Using Annoy for neighbor search, n_neighbors = 30 17:01:34 Building Annoy index with metric = cosine, n_trees = 50 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| 17:01:35 Writing NN index file to temp file C:\Users\lenovo\AppData\Local\Temp\RtmpSkA7CH\file240845ab5acb 17:01:35 Searching Annoy index using 1 thread, search_k = 3000 17:01:36 Annoy recall = 100% 17:01:37 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30 17:01:39 Initializing from normalized Laplacian + noise (using RSpectra) 17:01:39 Commencing optimization for 500 epochs, with 407622 positive edges 17:01:39 Using rng type: pcg Using method 'umap' 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| 17:01:55 Optimization finished [1] "./data/shNELL1_1/ SOUPX Finish!" 2970 genes passed tf-idf cut-off and 417 soup quantile filter. Taking the top 100. Using 1121 independent estimates of rho. Estimated global rho of 0.12 Expanding counts from 22 clusters to 9191 cells. [1] "1 is over" Normalizing layer: counts Performing log-normalization 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Finding variable features for layer counts Calculating gene variances 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Calculating feature variances of standardized and clipped values 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Centering and scaling data matrix |==============================================================| 100% Computing nearest neighbor graph Computing SNN Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck Number of nodes: 12275 Number of edges: 496718 Running Louvain algorithm... 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Maximum modularity in 10 random starts: 0.9498 Number of communities: 26 Elapsed time: 0 seconds 17:03:00 UMAP embedding parameters a = 0.9922 b = 1.112 17:03:00 Read 12275 rows and found 30 numeric columns 17:03:00 Using Annoy for neighbor search, n_neighbors = 30 17:03:00 Building Annoy index with metric = cosine, n_trees = 50 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| 17:03:01 Writing NN index file to temp file C:\Users\lenovo\AppData\Local\Temp\RtmpSkA7CH\file24082e643ddb 17:03:01 Searching Annoy index using 1 thread, search_k = 3000 17:03:03 Annoy recall = 100% 17:03:04 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30 17:03:05 Initializing from normalized Laplacian + noise (using RSpectra) 17:03:06 Commencing optimization for 200 epochs, with 557592 positive edges 17:03:06 Using rng type: pcg Using method 'umap' 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| 17:03:15 Optimization finished [1] "./data/shNELL1_2/ SOUPX Finish!" 3609 genes passed tf-idf cut-off and 619 soup quantile filter. Taking the top 100. Using 1448 independent estimates of rho. Estimated global rho of 0.09 Expanding counts from 26 clusters to 12275 cells. [1] "2 is over" Normalizing layer: counts Performing log-normalization 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Finding variable features for layer counts Calculating gene variances 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Calculating feature variances of standardized and clipped values 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Centering and scaling data matrix |==============================================================| 100% Computing nearest neighbor graph Computing SNN Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck Number of nodes: 11587 Number of edges: 455875 Running Louvain algorithm... 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Maximum modularity in 10 random starts: 0.9490 Number of communities: 28 Elapsed time: 0 seconds 17:04:22 UMAP embedding parameters a = 0.9922 b = 1.112 17:04:22 Read 11587 rows and found 30 numeric columns 17:04:22 Using Annoy for neighbor search, n_neighbors = 30 17:04:22 Building Annoy index with metric = cosine, n_trees = 50 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| 17:04:22 Writing NN index file to temp file C:\Users\lenovo\AppData\Local\Temp\RtmpSkA7CH\file2408d6d5010 17:04:22 Searching Annoy index using 1 thread, search_k = 3000 17:04:24 Annoy recall = 100% 17:04:25 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30 17:04:27 Initializing from normalized Laplacian + noise (using RSpectra) 17:04:27 Commencing optimization for 200 epochs, with 517796 positive edges 17:04:27 Using rng type: pcg Using method 'umap' 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| 17:04:35 Optimization finished [1] "./data/zipctl_1/ SOUPX Finish!" 2851 genes passed tf-idf cut-off and 578 soup quantile filter. Taking the top 100. Using 1275 independent estimates of rho. Estimated global rho of 0.11 Expanding counts from 28 clusters to 11587 cells. [1] "3 is over" Normalizing layer: counts Performing log-normalization 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Finding variable features for layer counts Calculating gene variances 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Calculating feature variances of standardized and clipped values 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Centering and scaling data matrix |==============================================================| 100% Computing nearest neighbor graph Computing SNN Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck Number of nodes: 10921 Number of edges: 423789 Running Louvain algorithm... 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Maximum modularity in 10 random starts: 0.9217 Number of communities: 23 Elapsed time: 0 seconds 17:05:41 UMAP embedding parameters a = 0.9922 b = 1.112 17:05:41 Read 10921 rows and found 30 numeric columns 17:05:41 Using Annoy for neighbor search, n_neighbors = 30 17:05:41 Building Annoy index with metric = cosine, n_trees = 50 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| 17:05:42 Writing NN index file to temp file C:\Users\lenovo\AppData\Local\Temp\RtmpSkA7CH\file24086b4f2bfb 17:05:42 Searching Annoy index using 1 thread, search_k = 3000 17:05:43 Annoy recall = 100% 17:05:44 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30 17:05:46 Initializing from normalized Laplacian + noise (using RSpectra) 17:05:46 Commencing optimization for 200 epochs, with 486162 positive edges 17:05:46 Using rng type: pcg Using method 'umap' 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| 17:05:54 Optimization finished [1] "./data/zipctl_2/ SOUPX Finish!" 1736 genes passed tf-idf cut-off and 292 soup quantile filter. Taking the top 100. Using 1079 independent estimates of rho. Estimated global rho of 0.13 Expanding counts from 23 clusters to 10921 cells. [1] "4 is over" 警告信息: 1: In sparseMatrix(i = out@i[w] + 1, j = out@j[w] + 1, x = out@x[w], : 'giveCsparse' is deprecated; setting repr="T" for you 2: In `[<-`(`*tmp*`, i, value = out) : implicit list embedding of S4 objects is deprecated 3: In sparseMatrix(i = out@i[w] + 1, j = out@j[w] + 1, x = out@x[w], : 'giveCsparse' is deprecated; setting repr="T" for you 4: In `[<-`(`*tmp*`, i, value = out) : implicit list embedding of S4 objects is deprecated 5: In sparseMatrix(i = out@i[w] + 1, j = out@j[w] + 1, x = out@x[w], : 'giveCsparse' is deprecated; setting repr="T" for you 6: In `[<-`(`*tmp*`, i, value = out) : implicit list embedding of S4 objects is deprecated 7: In sparseMatrix(i = out@i[w] + 1, j = out@j[w] + 1, x = out@x[w], : 'giveCsparse' is deprecated; setting repr="T" for you 8: In `[<-`(`*tmp*`, i, value = out) : implicit list embedding of S4 objects is deprecated > names(Soupx_list) = c('shNELL1_1', 'shNELL1_2', 'zipctl_1', 'zipctl_2') > sample1 <- Soupx_list[['shNELL1_1']] > sample2 <- Soupx_list[['shNELL1_2']] > sample3 <- Soupx_list[['zipctl_1']] > sample4 <- Soupx_list[['zipctl_2']] > ## doubletFinder #### > # shNELL1_1 > seurat_obj1 <- CreateSeuratObject(counts = sample1,project = 'shNELL1_1') > seurat_obj1[["percent.mt"]] <- PercentageFeatureSet(seurat_obj1, pattern = "^mt-") > VlnPlot(seurat_obj1, features = "nFeature_RNA", pt.size = 0, group.by = 'orig.ident') + NoLegend() 警告: Default search for "data" layer in "RNA" assay yielded no results; utilizing "counts" layer instead. 警告信息: 1: The `slot` argument of `FetchData()` is deprecated as of SeuratObject 5.0.0. ℹ Please use the `layer` argument instead. ℹ The deprecated feature was likely used in the Seurat package. Please report the issue at <https://github.com/satijalab/seurat/issues>. This warning is displayed once every 8 hours. Call `lifecycle::last_lifecycle_warnings()` to see where this warning was generated. 2: `PackageCheck()` was deprecated in SeuratObject 5.0.0. ℹ Please use `rlang::check_installed()` instead. ℹ The deprecated feature was likely used in the Seurat package. Please report the issue at <https://github.com/satijalab/seurat/issues>. This warning is displayed once every 8 hours. Call `lifecycle::last_lifecycle_warnings()` to see where this warning was generated. > VlnPlot(seurat_obj1, features = "nCount_RNA", pt.size = 0, group.by = 'orig.ident') + NoLegend() 警告: Default search for "data" layer in "RNA" assay yielded no results; utilizing "counts" layer instead. > VlnPlot(seurat_obj1, features = "percent.mt", pt.size = 0, group.by = 'orig.ident') + NoLegend() 警告: Default search for "data" layer in "RNA" assay yielded no results; utilizing "counts" layer instead. > seurat_obj1.qc <- subset(seurat_obj1, subset = nFeature_RNA > 500 & nFeature_RNA < 6000 & nCount_RNA > 1000 & nCount_RNA < quantile(seurat_obj1$nCount_RNA,0.97) & percent.mt < 5) > VlnPlot(seurat_obj1.qc, features = "nFeature_RNA", pt.size = 0, group.by = 'orig.ident') + NoLegend() 警告: Default search for "data" layer in "RNA" assay yielded no results; utilizing "counts" layer instead. > VlnPlot(seurat_obj1.qc, features = "nCount_RNA", pt.size = 0, group.by = 'orig.ident') + NoLegend() 警告: Default search for "data" layer in "RNA" assay yielded no results; utilizing "counts" layer instead. > VlnPlot(seurat_obj1.qc, features = "percent.mt", pt.size = 0, group.by = 'orig.ident') + NoLegend() 警告: Default search for "data" layer in "RNA" assay yielded no results; utilizing "counts" layer instead. > dim(seurat_obj1.qc) [1] 24879 7830 > seurat_obj1 <- SCTransform(seurat_obj1.qc, assay = "RNA", vars.to.regress = "percent.mt",vst.flavor = "v1") Running SCTransform on assay: RNA Calculating cell attributes from input UMI matrix: log_umi Variance stabilizing transformation of count matrix of size 19169 by 7830 Model formula is y ~ log_umi Get Negative Binomial regression parameters per gene Using 2000 genes, 5000 cells Found 112 outliers - those will be ignored in fitting/regularization step Second step: Get residuals using fitted parameters for 19169 genes Computing corrected count matrix for 19169 genes Calculating gene attributes Wall clock passed: Time difference of 59.51584 secs Determine variable features Regressing out percent.mt |==============================================================| 100% Centering data matrix |==============================================================| 100% Place corrected count matrix in counts slot Set default assay to SCT 警告信息: 1: The `slot` argument of `GetAssayData()` is deprecated as of SeuratObject 5.0.0. ℹ Please use the `layer` argument instead. ℹ The deprecated feature was likely used in the Seurat package. Please report the issue at <https://github.com/satijalab/seurat/issues>. This warning is displayed once every 8 hours. Call `lifecycle::last_lifecycle_warnings()` to see where this warning was generated. 2: The `slot` argument of `SetAssayData()` is deprecated as of SeuratObject 5.0.0. ℹ Please use the `layer` argument instead. ℹ The deprecated feature was likely used in the Seurat package. Please report the issue at <https://github.com/satijalab/seurat/issues>. This warning is displayed once every 8 hours. Call `lifecycle::last_lifecycle_warnings()` to see where this warning was generated. > seurat_obj1 <- ScaleData(seurat_obj1, features = VariableFeatures(seurat_obj1)) Centering and scaling data matrix |==============================================================| 100% > seurat_obj1 <- RunPCA(seurat_obj1, features = VariableFeatures(seurat_obj1)) PC_ 1 Positive: Tmsb4x, Fau, Tyrobp, Fcer1g, Btg1, Cd52, Actb, Ccl6, Ctss, Lgals3 Lyz2, Alox5ap, Rpl37a, Rac2, Rpl17, Rpl23, Cybb, Ftl1-ps1, Spi1, Gpx1 Selplg, Rpsa, Rps16, Stk17b, Rpl13a, Rpl39, Mpeg1, Rpl32, Rplp1, Tmsb10 Negative: Sparc, Nfib, Sptbn1, Cavin2, Fermt2, Epas1, Col4a1, Tmem100, Slc43a3, Igfbp7 Pakap, Crip2, Cldn5, Adgrf5, Ramp2, Cdh5, Tspan7, Bmpr2, Calcrl, Aqp1 Egfl7, Eng, Tcf4, Ptprb, Dlc1, Id3, Ly6c1, Ly6a, Clic5, Timp3 PC_ 2 Positive: Col1a2, Gsn, Serping1, Mgp, Sod3, Ogn, Col3a1, Pcolce2, Inmt, Rbp1 Rarres2, Loxl1, Bgn, Col1a1, Prelp, Gpc3, Pdgfra, Igfbp6, Mfap4, Cp Adh1, Crispld2, Col6a2, Col6a1, Fhl1, Cdh11, C1s1, Itga8, Pcolce, Fxyd1 Negative: Calcrl, Cldn5, Tspan7, Cdh5, Adgrf5, Epas1, Egfl7, Tmem100, Hpgd, Ptprb Ehd4, Pecam1, Ctla2a, Podxl, Icam2, Cd36, Ramp2, Clec1a, Ly6c1, Clic5 Slco2a1, Ly6a, Flt1, Gpihbp1, Eng, Ace, Aqp1, Cd93, S1pr1, Adgrl4 PC_ 3 Positive: Sec14l3, Tmem212, Dynlrb2, Fam183b, Ccdc153, Foxj1, 1700016K19Rik, Cbr2, Cyp2f2, 1110017D15Rik Ccdc113, Cldn3, 1700007K13Rik, Riiad1, Rsph1, 3300002A11Rik, Cfap126, Cyp2s1, Arhgdig, Tekt1 Tspan1, Hydin, Pifo, Fhad1, Dnah6, Ak7, 1700024G13Rik, Cdhr3, Sntn, Wfdc2 Negative: Mgp, Col1a2, Serping1, Pcolce2, Ogn, Bgn, Inmt, Sod3, Col3a1, Col1a1 Rbp1, Sparcl1, Loxl1, Fmo2, Prelp, Adh1, Pdgfra, Ltbp4, C1s1, Mfap4 Gpc3, Mfap5, Col6a1, Olfml3, Col6a2, Cfh, Crispld2, Cdh11, Fxyd1, Nbl1 PC_ 4 Positive: Ccl6, Msrb1, Tnfaip2, Cebpb, Gda, Alox5ap, Tyrobp, Ncf2, Spi1, Slpi Ftl1-ps1, Lyz2, Fth1, Wfdc21, Il1b, S100a8, S100a9, Cxcl2, Csf3r, Clec4d Fos, Cxcr2, S100a11, Il1r2, Pirb, Grik3, Lilr4b, Grina, Cd9, Retnlg Negative: Ms4a4b, Rpl13a, Rpl12, Ptprcap, Trbc2, Rps24, Rps15a, Gm2682, Rps21, Rpl32 Skap1, Rps7, Rpsa, Cd3d, Rps14, Rps8, Rpl34, Gimap6, Rps27, Rps16 Rps29, Cd3e, Lat, Trac, Rps20, Rpl17, Rplp1, Cd3g, Ets1, Tmsb10 PC_ 5 Positive: Chil3, Atp6v0d2, Ctss, Ear2, Mrc1, Plet1, Lpl, Abcg1, Krt79, Ear1 Cd9, Ctsz, Ctsd, Lyz2, Mpeg1, Trf, Lgals3, Cybb, Plin2, F10 S100a1, Krt19, Fabp1, AU020206, Cd68, Ctsk, Psap, Ftl1-ps1, Cstb, Marco Negative: S100a9, S100a8, Il1b, Srgn, Cxcr2, Il1r2, Csf3r, Hdc, Mxd1, Retnlg Hp, Pglyrp1, Clec4d, Mir142hg, Lmnb1, Cd52, Malat1, Sorl1, Gm16894, Mmp9 Ifitm1, Il1f9, H2-Q10, G0s2, Slfn1, Dennd4a, Ripor2, Sell, Ifitm2, Acod1 > print(DimPlot(seurat_obj1, reduction = "pca")) > seurat_obj1 <- FindNeighbors(seurat_obj1, dims = 1:20) Computing nearest neighbor graph Computing SNN > seurat_obj1 <- FindClusters(seurat_obj1, + resolution = 0.6, + method = 'igraph', + verbose = T) Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck Number of nodes: 7830 Number of edges: 252001 Running Louvain algorithm... 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Maximum modularity in 10 random starts: 0.9329 Number of communities: 23 Elapsed time: 0 seconds 警告信息: The `method` argument of `FindClusters()` is deprecated as of Seurat 5.2.0. This warning is displayed once every 8 hours. Call `lifecycle::last_lifecycle_warnings()` to see where this warning was generated. > seurat_obj1 <- RunUMAP(seurat_obj1, dims = 1:20) 17:16:19 UMAP embedding parameters a = 0.9922 b = 1.112 17:16:19 Read 7830 rows and found 20 numeric columns 17:16:19 Using Annoy for neighbor search, n_neighbors = 30 17:16:19 Building Annoy index with metric = cosine, n_trees = 50 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| 17:16:19 Writing NN index file to temp file C:\Users\lenovo\AppData\Local\Temp\RtmpSkA7CH\file24083a2c25ec 17:16:19 Searching Annoy index using 1 thread, search_k = 3000 17:16:21 Annoy recall = 100% 17:16:22 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30 17:16:23 Initializing from normalized Laplacian + noise (using RSpectra) 17:16:23 Commencing optimization for 500 epochs, with 325920 positive edges 17:16:23 Using rng type: pcg Using method 'umap' 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| 17:16:37 Optimization finished > DimPlot(seurat_obj1, reduction = "umap", group.by = "seurat_clusters") > sweep.res.list <- paramSweep(seurat_obj1, PCs = 1:20, sct = TRUE) [1] "Creating artificial doublets for pN = 5%" [1] "Creating Seurat object..." [1] "Running SCTransform..." Running SCTransform on assay: RNA vst.flavor='v2' set. Using model with fixed slope and excluding poisson genes. Calculating cell attributes from input UMI matrix: log_umi Variance stabilizing transformation of count matrix of size 19406 by 8242 Model formula is y ~ log_umi Get Negative Binomial regression parameters per gene Using 2000 genes, 5000 cells There are 67 estimated thetas smaller than 1e-07 - will be set to 1e-07 Found 1 outliers - those will be ignored in fitting/regularization step Second step: Get residuals using fitted parameters for 19406 genes Computing corrected count matrix for 19406 genes Calculating gene attributes Wall clock passed: Time difference of 40.72067 secs Determine variable features Centering data matrix |==============================================================| 100% Place corrected count matrix in counts slot Set default assay to SCT [1] "Running PCA..." PC_ 1 Positive: S100a9, S100a8, Il1b, Retnlg, Tyrobp, Srgn, Cxcl2, Ifitm1, Il1r2, Cxcr2 Hdc, Csf3r, Ccl6, Hp, S100a6, S100a11, Wfdc17, Lyz2, G0s2, Mxd1 Clec4d, Pglyrp1, Slpi, Stfa2l1, Fth1, Junb, Lmnb1, Msrb1, Wfdc21, Grina Negative: Mgp, Epas1, Ly6a, Sparc, Ramp2, Ptprb, Tmem100, Calcrl, Ly6c1, Inmt Ctla2a, Igfbp7, Cldn5, Cavin2, Hpgd, Gsn, Tspan7, Aqp1, Tm4sf1, Cdh5 Adgrf5, Sptbn1, Bgn, Cd74, Gpihbp1, Ehd4, Egfl7, Cd36, Pltp, Jun PC_ 2 Positive: S100a9, S100a8, Il1b, Epas1, Mgp, Ly6a, Sparc, Retnlg, Calcrl, Ramp2 Ptprb, Tmem100, Ly6c1, Inmt, Igfbp7, Cldn5, Malat1, Ifitm2, Cavin2, Ctla2a Gsn, Hpgd, Ifitm1, Tspan7, Aqp1, Adgrf5, Il1r2, Cdh5, Ifitm3, Cxcr2 Negative: Cd74, Ccl5, H2-Aa, H2-Ab1, H2-Eb1, Rps8, Lyz2, Rps24, Rplp1, Rpl13a Rps27, Tpt1, Rps29, Gzma, Rpl39, Rps16, Rpl37a, Rpl34, Rps21, Rpl23 Rps20, Rpl17, Rpl12, Fau, Rpl41, Rpl32, Rps12, Rps15a, Rplp2, Rps14 PC_ 3 Positive: Lyz2, Mgp, Chil3, Ccl6, Inmt, Gsn, Fth1, Ftl1-ps1, Ctss, Ear2 Bgn, Ctsd, Col1a2, Lgals3, Serping1, Fmo2, Apoe, Pcolce2, Npnt, Ogn Cd9, Dcn, Ear1, Sod3, Abcg1, Ltbp4, Col3a1, Gpx3, Limch1, Atp6v0d2 Negative: Cd74, Ccl5, H2-Ab1, H2-Aa, S100a9, H2-Eb1, S100a8, Gzma, Epas1, Il1b Ly6a, Malat1, Cd52, Ctla2a, Ramp2, Ptprb, Calcrl, Tmem100, Srgn, Ly6c1 Rps27, Cldn5, Hpgd, Tspan7, Rps24, Retnlg, Rpl13a, Nkg7, Igkc, Cavin2 PC_ 4 Positive: Mgp, Inmt, Gsn, Bgn, Col1a2, Ccl5, Serping1, Fmo2, Pcolce2, Npnt Ogn, Sparc, Igfbp7, Dcn, S100a9, Ltbp4, Sod3, Cst3, Gpx3, Igfbp6 Limch1, Col3a1, S100a8, S100a6, Sparcl1, Eln, Apoe, Gzma, Col1a1, Il1b Negative: Lyz2, Chil3, Ccl6, Epas1, Ftl1-ps1, Ctss, Ear2, Ctsd, Ly6a, Calcrl Ramp2, Ptprb, Tmem100, Cd9, Ly6c1, Lgals3, Cldn5, Ctla2a, Hpgd, Abcg1 Tspan7, Ear1, Cd36, Cmss1, Lpl, Adgrf5, Atp6v0d2, Cdh5, Cybb, Cxcl2 PC_ 5 Positive: Ccl5, Gzma, Nkg7, Malat1, AW112010, Ms4a4b, Gm2682, Ly6c2, Trbc2, Lgals1 Klra4, Prf1, Gzmb, Ptprcap, Hcst, Trbc1, Klrk1, Gimap6, Skap1, Klre1 Il2rb, Rac2, Mir142hg, Tmsb10, Vps37b, Txk, Ets1, Cd3d, Klrd1, Gm2245 Negative: Cd74, H2-Ab1, H2-Aa, H2-Eb1, Cst3, Apoe, Mgl2, Il1b, Mt1, C1qa Igkc, Crip1, C1qb, Ifitm3, H2-DMa, C1qc, Plbd1, Psap, Egr1, Ccl17 Fth1, Ifi30, Fos, H2-DMb1, Mgp, Gpx1, Aif1, Gm2a, Ifitm2, Zfp36 [1] "Calculating PC distance matrix..." [1] "Defining neighborhoods..." [1] "Computing pANN across all pK..." [1] "pK = 0.005..." [1] "pK = 0.01..." [1] "pK = 0.02..." [1] "pK = 0.03..." [1] "pK = 0.04..." [1] "pK = 0.05..." [1] "pK = 0.06..." [1] "pK = 0.07..." [1] "pK = 0.08..." [1] "pK = 0.09..." [1] "pK = 0.1..." [1] "pK = 0.11..." [1] "pK = 0.12..." [1] "pK = 0.13..." [1] "pK = 0.14..." [1] "pK = 0.15..." [1] "pK = 0.16..." [1] "pK = 0.17..." [1] "pK = 0.18..." [1] "pK = 0.19..." [1] "pK = 0.2..." [1] "pK = 0.21..." [1] "pK = 0.22..." [1] "pK = 0.23..." [1] "pK = 0.24..." [1] "pK = 0.25..." [1] "pK = 0.26..." [1] "pK = 0.27..." [1] "pK = 0.28..." [1] "pK = 0.29..." [1] "pK = 0.3..." [1] "Creating artificial doublets for pN = 10%" [1] "Creating Seurat object..." [1] "Running SCTransform..." Running SCTransform on assay: RNA vst.flavor='v2' set. Using model with fixed slope and excluding poisson genes. Calculating cell attributes from input UMI matrix: log_umi Variance stabilizing transformation of count matrix of size 19628 by 8700 Model formula is y ~ log_umi Get Negative Binomial regression parameters per gene Using 2000 genes, 5000 cells There are 83 estimated thetas smaller than 1e-07 - will be set to 1e-07 Second step: Get residuals using fitted parameters for 19628 genes Computing corrected count matrix for 19628 genes Calculating gene attributes Wall clock passed: Time difference of 42.42966 secs Determine variable features Centering data matrix |==============================================================| 100% Place corrected count matrix in counts slot Set default assay to SCT [1] "Running PCA..." PC_ 1 Positive: Mgp, Epas1, Ly6a, Sparc, Cd74, Inmt, Ramp2, Ptprb, Tmem100, Ly6c1 Igfbp7, Ctla2a, Calcrl, Gsn, Cldn5, Cavin2, Hpgd, H2-Ab1, H2-Aa, Tspan7 Bgn, Aqp1, H2-Eb1, Sptbn1, Tm4sf1, Cdh5, Adgrf5, Rps8, Gpihbp1, Ehd4 Negative: S100a9, S100a8, Il1b, Retnlg, Tyrobp, Srgn, Cxcl2, Ifitm1, Il1r2, Cxcr2 Hdc, Csf3r, S100a11, Hp, S100a6, Ccl6, Wfdc17, G0s2, Mxd1, Clec4d Lyz2, Pglyrp1, Stfa2l1, Ifitm2, Slpi, Junb, Fth1, Lmnb1, Msrb1, Wfdc21 PC_ 2 Positive: Cd74, Ccl5, Lyz2, H2-Aa, H2-Ab1, H2-Eb1, Rps24, Rps8, Rps27, Rplp1 Rpl13a, Tpt1, Rps29, Fau, Gzma, Rps16, Rpl39, Rpl37a, Rpl34, Rpl17 Rpl23, Rpl41, Rpl12, Rps20, Rps21, Rpl32, Rps12, Rplp2, Rps15a, Rps28 Negative: Mgp, Epas1, S100a9, Ly6a, Sparc, S100a8, Inmt, Calcrl, Ramp2, Ptprb Tmem100, Igfbp7, Ly6c1, Gsn, Il1b, Cldn5, Cavin2, Ctla2a, Hpgd, Malat1 Tspan7, Aqp1, Sptbn1, Adgrf5, Cdh5, Bgn, Ifitm2, Tm4sf1, Ifitm3, Jun PC_ 3 Positive: Ccl5, Cd74, S100a9, S100a8, Il1b, Gzma, H2-Ab1, H2-Aa, H2-Eb1, Malat1 Cd52, Srgn, Rps27, Cst3, Retnlg, Rps24, Rpl13a, Tpt1, Nkg7, Rps29 Igkc, Rpl12, Ly6a, Ifitm1, S100a6, Mir142hg, Fau, Ms4a4b, Rpl34, Rps21 Negative: Lyz2, Chil3, Ccl6, Ftl1-ps1, Fth1, Ctss, Ear2, Ctsd, Lgals3, Cd9 Ear1, Abcg1, Atp6v0d2, Cybb, Lpl, Psap, Cmss1, Grik3, Mpeg1, Mrc1 Cxcl2, Krt79, Gm42418, Ctsz, Plet1, Trf, Marco, Plin2, Fabp5, Fabp1 PC_ 4 Positive: Epas1, Ly6a, Calcrl, Ramp2, Ptprb, Tmem100, Ly6c1, Ctla2a, Cldn5, Lyz2 Hpgd, Tspan7, Cd74, Adgrf5, Cdh5, Cd36, Cavin2, Aqp1, Chil3, Ehd4 Gpihbp1, Ace, Tm4sf1, Egfl7, Clic5, Pecam1, Bmpr2, Cd93, Sema3c, Icam2 Negative: Mgp, Inmt, Gsn, Bgn, Col1a2, Serping1, Fmo2, Pcolce2, Dcn, Npnt Ogn, Igfbp7, Ltbp4, Sod3, Igfbp6, Col3a1, Sparc, Gpx3, Limch1, Apoe Sparcl1, Col1a1, Eln, Prelp, Timp3, Mfap4, Dpt, S100a6, Macf1, Rbp1 PC_ 5 Positive: Ccl5, Gzma, Nkg7, Malat1, AW112010, Ms4a4b, Gm2682, Ly6c2, Trbc2, Lgals1 Klra4, Gzmb, Prf1, Ptprcap, Hcst, Trbc1, Klrk1, Gimap6, Skap1, Klre1 Tmsb10, Rpl13a, Il2rb, Rac2, Mir142hg, Vps37b, Txk, Cd3d, Ets1, Klrd1 Negative: Cd74, H2-Ab1, H2-Aa, H2-Eb1, Cst3, Apoe, Mgl2, Il1b, C1qa, Mt1 Crip1, C1qb, Psap, Ifitm3, C1qc, Fth1, Igkc, H2-DMa, Egr1, Plbd1 Ccl17, Mgp, Ifi30, Fos, H2-DMb1, Gpx1, Ifitm2, Aif1, Gm2a, Zfp36 [1] "Calculating PC distance matrix..." [1] "Defining neighborhoods..." [1] "Computing pANN across all pK..." [1] "pK = 0.005..." [1] "pK = 0.01..." [1] "pK = 0.02..." [1] "pK = 0.03..." [1] "pK = 0.04..." [1] "pK = 0.05..." [1] "pK = 0.06..." [1] "pK = 0.07..." [1] "pK = 0.08..." [1] "pK = 0.09..." [1] "pK = 0.1..." [1] "pK = 0.11..." [1] "pK = 0.12..." [1] "pK = 0.13..." [1] "pK = 0.14..." [1] "pK = 0.15..." [1] "pK = 0.16..." [1] "pK = 0.17..." [1] "pK = 0.18..." [1] "pK = 0.19..." [1] "pK = 0.2..." [1] "pK = 0.21..." [1] "pK = 0.22..." [1] "pK = 0.23..." [1] "pK = 0.24..." [1] "pK = 0.25..." [1] "pK = 0.26..." [1] "pK = 0.27..." [1] "pK = 0.28..." [1] "pK = 0.29..." [1] "pK = 0.3..." [1] "Creating artificial doublets for pN = 15%" [1] "Creating Seurat object..." [1] "Running SCTransform..." Running SCTransform on assay: RNA vst.flavor='v2' set. Using model with fixed slope and excluding poisson genes. Calculating cell attributes from input UMI matrix: log_umi Variance stabilizing transformation of count matrix of size 19846 by 9212 Model formula is y ~ log_umi Get Negative Binomial regression parameters per gene Using 2000 genes, 5000 cells There are 77 estimated thetas smaller than 1e-07 - will be set to 1e-07 Second step: Get residuals using fitted parameters for 19846 genes Computing corrected count matrix for 19846 genes Calculating gene attributes Wall clock passed: Time difference of 43.96074 secs Determine variable features Centering data matrix |==============================================================| 100% Place corrected count matrix in counts slot Set default assay to SCT [1] "Running PCA..." PC_ 1 Positive: S100a9, S100a8, Il1b, Retnlg, Tyrobp, Srgn, Ifitm1, Cxcl2, Il1r2, Cxcr2 Hdc, Csf3r, Hp, S100a6, S100a11, Wfdc17, G0s2, Ccl6, Mxd1, Clec4d Pglyrp1, Ifitm2, Stfa2l1, Junb, Lmnb1, Slpi, Lyz2, Grina, Msrb1, Wfdc21 Negative: Mgp, Epas1, Ly6a, Sparc, Cd74, Inmt, Ramp2, Igfbp7, Ptprb, Tmem100 Ly6c1, Calcrl, Ctla2a, Gsn, Cldn5, Cavin2, Hpgd, H2-Ab1, H2-Aa, Bgn Tspan7, Aqp1, H2-Eb1, Tm4sf1, Sptbn1, Cdh5, Adgrf5, Col1a2, Rps8, Gpihbp1 PC_ 2 Positive: Mgp, Epas1, Sparc, S100a9, Ly6a, S100a8, Inmt, Gsn, Igfbp7, Ramp2 Calcrl, Ptprb, Tmem100, Ly6c1, Il1b, Cldn5, Cavin2, Ctla2a, Hpgd, Malat1 Bgn, Tspan7, Aqp1, Sptbn1, Adgrf5, Cdh5, Ifitm3, Ifitm2, Tm4sf1, Col1a2 Negative: Cd74, Ccl5, Lyz2, H2-Aa, H2-Ab1, H2-Eb1, Rps24, Rps8, Rps27, Rplp1 Rpl13a, Gzma, Rps29, Tpt1, Fau, Rpl39, Rps16, Rpl37a, Rpl17, Rpl34 Rpl23, Rpl12, Rpl41, Rpl32, Rps20, Chil3, Rps21, Tmsb4x, Rps28, Rps12 PC_ 3 Positive: Cd74, Ccl5, S100a9, S100a8, H2-Ab1, H2-Aa, H2-Eb1, Gzma, Il1b, Malat1 Cd52, Rps27, Srgn, Ly6a, Epas1, Cst3, Retnlg, Rps24, Rpl13a, Ctla2a Nkg7, Igkc, Tmem100, Ramp2, Ptprb, Calcrl, Ly6c1, Rps29, Tpt1, Rpl12 Negative: Lyz2, Chil3, Ccl6, Ftl1-ps1, Fth1, Ctss, Ear2, Mgp, Ctsd, Lgals3 Cd9, Inmt, Ear1, Abcg1, Gsn, Atp6v0d2, Cybb, Lpl, Grik3, Cxcl2 Psap, Cmss1, Mpeg1, Mrc1, Krt79, Gm42418, Ctsz, Plet1, Marco, Cd63 PC_ 4 Positive: Mgp, Inmt, Gsn, Bgn, Col1a2, Serping1, Fmo2, Pcolce2, Dcn, Npnt Ogn, Igfbp7, Ltbp4, Col3a1, Sod3, Igfbp6, Limch1, Sparc, Gpx3, Apoe Cst3, Col1a1, Sparcl1, Eln, Timp3, Prelp, S100a6, Mfap4, Ccl5, Dpt Negative: Lyz2, Epas1, Ly6a, Chil3, Calcrl, Ptprb, Ramp2, Tmem100, Ly6c1, Ctla2a Cldn5, Ccl6, Hpgd, Tspan7, Adgrf5, Cdh5, Cd36, Cavin2, Aqp1, Ehd4 Gpihbp1, Ace, Tm4sf1, Egfl7, Clic5, Bmpr2, Cd93, Pecam1, Ctss, Sema3c PC_ 5 Positive: Ccl5, Gzma, Nkg7, Malat1, AW112010, Ms4a4b, Gm2682, Ly6c2, Trbc2, Lgals1 Klra4, Ptprcap, Prf1, Gzmb, Hcst, Trbc1, Klrk1, Gimap6, Skap1, Klre1 Tmsb10, Rpl13a, Rac2, Il2rb, Mir142hg, Vps37b, Txk, Cd3d, Ets1, Klrd1 Negative: Cd74, H2-Ab1, H2-Aa, H2-Eb1, Cst3, Apoe, Mgl2, Mt1, Il1b, C1qa Crip1, Psap, Ifitm3, C1qb, H2-DMa, C1qc, Fth1, Plbd1, Ccl17, Igkc Egr1, Ifi30, Fos, H2-DMb1, Mgp, Gpx1, Lyz2, Gm2a, Aif1, Zfp36 [1] "Calculating PC distance matrix..." [1] "Defining neighborhoods..." [1] "Computing pANN across all pK..." [1] "pK = 0.005..." [1] "pK = 0.01..." [1] "pK = 0.02..." [1] "pK = 0.03..." [1] "pK = 0.04..." [1] "pK = 0.05..." [1] "pK = 0.06..." [1] "pK = 0.07..." [1] "pK = 0.08..." [1] "pK = 0.09..." [1] "pK = 0.1..." [1] "pK = 0.11..." [1] "pK = 0.12..." [1] "pK = 0.13..." [1] "pK = 0.14..." [1] "pK = 0.15..." [1] "pK = 0.16..." [1] "pK = 0.17..." [1] "pK = 0.18..." [1] "pK = 0.19..." [1] "pK = 0.2..." [1] "pK = 0.21..." [1] "pK = 0.22..." [1] "pK = 0.23..." [1] "pK = 0.24..." [1] "pK = 0.25..." [1] "pK = 0.26..." [1] "pK = 0.27..." [1] "pK = 0.28..." [1] "pK = 0.29..." [1] "pK = 0.3..." [1] "Creating artificial doublets for pN = 20%" [1] "Creating Seurat object..." [1] "Running SCTransform..." Running SCTransform on assay: RNA vst.flavor='v2' set. Using model with fixed slope and excluding poisson genes. Calculating cell attributes from input UMI matrix: log_umi Variance stabilizing transformation of count matrix of size 20096 by 9788 Model formula is y ~ log_umi Get Negative Binomial regression parameters per gene Using 2000 genes, 5000 cells There are 96 estimated thetas smaller than 1e-07 - will be set to 1e-07 Found 2 outliers - those will be ignored in fitting/regularization step Second step: Get residuals using fitted parameters for 20096 genes Computing corrected count matrix for 20096 genes Calculating gene attributes Wall clock passed: Time difference of 48.67748 secs Determine variable features Centering data matrix |==============================================================| 100% Place corrected count matrix in counts slot Set default assay to SCT [1] "Running PCA..." PC_ 1 Positive: Cd74, Mgp, H2-Ab1, H2-Aa, Epas1, Sparc, Ly6a, Inmt, H2-Eb1, Rps8 Ccl5, Gsn, Igfbp7, Rps24, Cst3, Tpt1, Ramp2, Rplp1, Ptprb, Rpl13a Tmem100, Ctla2a, Ly6c1, Rps21, Rps29, Calcrl, Rps20, Bgn, Rpl12, Rps27 Negative: S100a9, S100a8, Il1b, Retnlg, Tyrobp, Srgn, Ifitm1, Cxcl2, Il1r2, Cxcr2 Hdc, Csf3r, S100a6, Hp, S100a11, G0s2, Wfdc17, Clec4d, Mxd1, Ifitm2 Ccl6, Stfa2l1, Pglyrp1, Junb, Lmnb1, Slpi, Grina, Gm16894, Msrb1, Wfdc21 PC_ 2 Positive: Mgp, Inmt, Sparc, Gsn, Epas1, Ly6a, Igfbp7, Ramp2, Bgn, Ptprb Calcrl, Tmem100, Ly6c1, Col1a2, Cldn5, Cavin2, Ctla2a, Fmo2, Hpgd, S100a9 Malat1, Tspan7, Aqp1, Sptbn1, Jun, Timp3, S100a8, Ifitm3, Serping1, Adgrf5 Negative: Cd74, Ccl5, Lyz2, H2-Aa, H2-Ab1, H2-Eb1, Rps27, Rps24, Gzma, Rps8 Rpl13a, Fau, Rplp1, Rps29, Tmsb4x, Tpt1, Chil3, Rpl37a, Rpl39, Rps16 Rpl41, Rpl17, Rpl34, Rpl23, Rpl32, Cd52, Rpl12, Rps11, Rps20, Rplp2 PC_ 3 Positive: Lyz2, Chil3, Ccl6, Ftl1-ps1, Ctss, Ear2, Fth1, Ctsd, Lgals3, Cd9 Abcg1, Ear1, Cmss1, Cybb, Atp6v0d2, Lpl, Cxcl2, Grik3, Mpeg1, Psap Mrc1, Gm42418, Krt79, Ctsz, Plet1, Trf, Marco, Fabp5, Plin2, Fabp1 Negative: Cd74, Ccl5, S100a9, H2-Ab1, H2-Aa, S100a8, H2-Eb1, Cst3, Il1b, Gzma Cd52, Malat1, Rps27, Srgn, Mgp, Rps24, Rpl13a, Retnlg, Tpt1, S100a6 Igkc, Rps29, Rpl12, Rps21, Rpl34, Rpl17, Rps16, Nkg7, Fau, Rps15a PC_ 4 Positive: Mgp, Inmt, Gsn, Bgn, Col1a2, Serping1, Dcn, Pcolce2, Fmo2, Ogn Npnt, Apoe, Col3a1, Igfbp6, Sod3, Ltbp4, Gpx3, Limch1, Col1a1, Eln Sparcl1, Igfbp7, Fth1, Prelp, Sparc, Mfap4, Dpt, Timp3, Cst3, Rbp1 Negative: Epas1, Ly6a, Calcrl, Ptprb, Ramp2, Tmem100, Ly6c1, Ctla2a, Cldn5, Hpgd Tspan7, Cavin2, Adgrf5, Cdh5, Aqp1, Gpihbp1, Cd36, Cd74, Tm4sf1, Ehd4 Ace, Egfl7, Clic5, Pecam1, Icam2, Eng, Sema3c, Bmpr2, Podxl, Slco2a1 PC_ 5 Positive: Cd74, H2-Ab1, H2-Aa, H2-Eb1, Cst3, Apoe, Mgl2, Lyz2, Mt1, C1qa Fth1, Psap, C1qb, Ifitm3, C1qc, Il1b, Crip1, Ccl17, H2-DMa, Egr1 Plbd1, Fos, Ftl1-ps1, Ifi30, Ctss, Gpx1, H2-DMb1, Cxcl2, Igkc, Mgp Negative: Ccl5, Gzma, Nkg7, Malat1, AW112010, Ms4a4b, Gm2682, Ly6c2, Trbc2, Lgals1 Gzmb, Prf1, Ptprcap, Klra4, Hcst, Trbc1, Rpl13a, Klrk1, Tmsb10, Skap1 Gimap6, Mir142hg, Klre1, Rac2, Il2rb, Vps37b, Cd52, Cd3d, Hmgb2, Txk [1] "Calculating PC distance matrix..." [1] "Defining neighborhoods..." [1] "Computing pANN across all pK..." [1] "pK = 0.005..." [1] "pK = 0.01..." [1] "pK = 0.02..." [1] "pK = 0.03..." [1] "pK = 0.04..." [1] "pK = 0.05..." [1] "pK = 0.06..." [1] "pK = 0.07..." [1] "pK = 0.08..." [1] "pK = 0.09..." [1] "pK = 0.1..." [1] "pK = 0.11..." [1] "pK = 0.12..." [1] "pK = 0.13..." [1] "pK = 0.14..." [1] "pK = 0.15..." [1] "pK = 0.16..." [1] "pK = 0.17..." [1] "pK = 0.18..." [1] "pK = 0.19..." [1] "pK = 0.2..." [1] "pK = 0.21..." [1] "pK = 0.22..." [1] "pK = 0.23..." [1] "pK = 0.24..." [1] "pK = 0.25..." [1] "pK = 0.26..." [1] "pK = 0.27..." [1] "pK = 0.28..." [1] "pK = 0.29..." [1] "pK = 0.3..." [1] "Creating artificial doublets for pN = 25%" [1] "Creating Seurat object..." [1] "Running SCTransform..." Running SCTransform on assay: RNA vst.flavor='v2' set. Using model with fixed slope and excluding poisson genes. Calculating cell attributes from input UMI matrix: log_umi Variance stabilizing transformation of count matrix of size 20322 by 10440 Model formula is y ~ log_umi Get Negative Binomial regression parameters per gene Using 2000 genes, 5000 cells There are 88 estimated thetas smaller than 1e-07 - will be set to 1e-07 Found 2 outliers - those will be ignored in fitting/regularization step Second step: Get residuals using fitted parameters for 20322 genes Computing corrected count matrix for 20322 genes Calculating gene attributes Wall clock passed: Time difference of 47.64712 secs Determine variable features Centering data matrix |==============================================================| 100% Place corrected count matrix in counts slot Set default assay to SCT [1] "Running PCA..." PC_ 1 Positive: Cd74, Mgp, H2-Ab1, H2-Aa, H2-Eb1, Rps8, Sparc, Inmt, Cst3, Ccl5 Epas1, Ly6a, Rps24, Tpt1, Rplp1, Rpl13a, Rps29, Rps21, Gsn, Rps20 Igfbp7, Rps27, Rpl12, Rps12, Rpl34, Rpl39, Ctla2a, Ramp2, Rps14, Rpl41 Negative: S100a9, S100a8, Il1b, Retnlg, Srgn, Tyrobp, Ifitm1, Cxcl2, Il1r2, Cxcr2 Csf3r, Hdc, Hp, S100a6, S100a11, G0s2, Wfdc17, Mxd1, Clec4d, Ifitm2 Stfa2l1, Pglyrp1, Ccl6, Lmnb1, Junb, Grina, Slpi, Msrb1, Gm16894, Wfdc21 PC_ 2 Positive: Mgp, Inmt, Gsn, Sparc, Epas1, Igfbp7, Ly6a, Bgn, Ramp2, Tmem100 Col1a2, Ptprb, Ly6c1, Calcrl, Fmo2, Cavin2, Cldn5, Ctla2a, Timp3, Hpgd Jun, Serping1, Sptbn1, Ltbp4, Tspan7, Dcn, Ifitm3, Aqp1, Pcolce2, Npnt Negative: Cd74, H2-Aa, H2-Ab1, Ccl5, H2-Eb1, Lyz2, Gzma, Fau, Tmsb4x, Rps27 Rps24, Rps8, Rpl13a, Rplp1, Rps29, Cst3, Tpt1, Cd52, Chil3, Rpl17 Rpl37a, Rpl39, Rpl41, Rps16, Rpl34, Rps11, Rpl23, Rpl32, Ccl6, Rpl12 PC_ 3 Positive: Lyz2, Chil3, Ccl6, Ftl1-ps1, Ear2, Ctss, Ctsd, Fth1, Lgals3, Cd9 Abcg1, Ear1, Cxcl2, Cybb, Cmss1, Atp6v0d2, Lpl, Grik3, Mpeg1, Mrc1 Gm42418, Krt79, Psap, Ctsz, Plet1, Slpi, Marco, Trf, Plin2, Fabp1 Negative: Cd74, H2-Ab1, H2-Aa, H2-Eb1, Cst3, S100a9, Ccl5, S100a8, Il1b, Mgp Gzma, Cd52, Malat1, Rps27, Srgn, Inmt, Rps24, Tpt1, S100a6, Retnlg Rpl13a, Igkc, Gsn, Rps29, Rps21, Rpl34, Rpl17, Rpl12, Fau, Rps16 PC_ 4 Positive: Epas1, Ly6a, Ptprb, Ramp2, Tmem100, Calcrl, Ly6c1, Ctla2a, Cldn5, Hpgd Tspan7, Cavin2, Adgrf5, Cdh5, Aqp1, Cd74, Tm4sf1, Cd36, Gpihbp1, Ehd4 Ace, Egfl7, Clic5, Pecam1, Icam2, Bmpr2, Eng, Sema3c, Cd93, Slco2a1 Negative: Mgp, Inmt, Gsn, Bgn, Col1a2, Dcn, Serping1, Fmo2, Pcolce2, Apoe Ogn, Npnt, Col3a1, Sod3, Igfbp6, Ltbp4, Gpx3, Limch1, Fth1, Col1a1 Sparcl1, Eln, Igfbp7, Prelp, Mfap4, Timp3, Dpt, S100a6, Lyz2, Rbp1 PC_ 5 Positive: Cd74, H2-Ab1, H2-Aa, H2-Eb1, Cst3, Lyz2, Apoe, Fth1, Mt1, Ccl6 Ftl1-ps1, Psap, Mgl2, Chil3, Ctss, Mgp, C1qa, Cxcl2, Egr1, Ccl17 Fos, C1qc, C1qb, Ifitm3, Ifi30, Gpx1, Crip1, Plbd1, Il1b, Inmt Negative: Ccl5, Gzma, Nkg7, Malat1, AW112010, Ms4a4b, Ly6c2, Gm2682, Trbc2, Ptprcap Rpl13a, Lgals1, Gzmb, Prf1, Klra4, Cd52, Hcst, Trbc1, Rps27, Gimap6 Tmsb10, Mir142hg, Rac2, Skap1, Klrk1, Hmgb2, Ptpn18, Klre1, Id2, Vps37b [1] "Calculating PC distance matrix..." [1] "Defining neighborhoods..." [1] "Computing pANN across all pK..." [1] "pK = 0.005..." [1] "pK = 0.01..." [1] "pK = 0.02..." [1] "pK = 0.03..." [1] "pK = 0.04..." [1] "pK = 0.05..." [1] "pK = 0.06..." [1] "pK = 0.07..." [1] "pK = 0.08..." [1] "pK = 0.09..." [1] "pK = 0.1..." [1] "pK = 0.11..." [1] "pK = 0.12..." [1] "pK = 0.13..." [1] "pK = 0.14..." [1] "pK = 0.15..." [1] "pK = 0.16..." [1] "pK = 0.17..." [1] "pK = 0.18..." [1] "pK = 0.19..." [1] "pK = 0.2..." [1] "pK = 0.21..." [1] "pK = 0.22..." [1] "pK = 0.23..." [1] "pK = 0.24..." [1] "pK = 0.25..." [1] "pK = 0.26..." [1] "pK = 0.27..." [1] "pK = 0.28..." [1] "pK = 0.29..." [1] "pK = 0.3..." [1] "Creating artificial doublets for pN = 30%" [1] "Creating Seurat object..." [1] "Running SCTransform..." Running SCTransform on assay: RNA vst.flavor='v2' set. Using model with fixed slope and excluding poisson genes. Calculating cell attributes from input UMI matrix: log_umi Variance stabilizing transformation of count matrix of size 20542 by 11186 Model formula is y ~ log_umi Get Negative Binomial regression parameters per gene Using 2000 genes, 5000 cells There are 87 estimated thetas smaller than 1e-07 - will be set to 1e-07 Found 1 outliers - those will be ignored in fitting/regularization step Second step: Get residuals using fitted parameters for 20542 genes Computing corrected count matrix for 20542 genes Calculating gene attributes Wall clock passed: Time difference of 51.14941 secs Determine variable features Centering data matrix |==============================================================| 100% Place corrected count matrix in counts slot Set default assay to SCT [1] "Running PCA..." PC_ 1 Positive: S100a9, S100a8, Il1b, Retnlg, Srgn, Ifitm1, Tyrobp, Il1r2, Cxcl2, Cxcr2 Csf3r, Hdc, Hp, S100a6, S100a11, G0s2, Wfdc17, Mxd1, Clec4d, Ifitm2 Stfa2l1, Pglyrp1, Lmnb1, Junb, Grina, Slpi, Ccl6, Msrb1, Gm16894, Wfdc21 Negative: Mgp, Cd74, H2-Ab1, H2-Aa, H2-Eb1, Inmt, Sparc, Epas1, Ly6a, Cst3 Rps8, Gsn, Igfbp7, Rplp1, Rps24, Tpt1, Rpl13a, Rps29, Ramp2, Ccl5 Ctla2a, Rps21, Bgn, Ptprb, Ly6c1, Rps20, Tmem100, Calcrl, Rps12, Rpl12 PC_ 2 Positive: Mgp, Inmt, Gsn, Sparc, Igfbp7, Bgn, Epas1, Col1a2, Ly6a, Fmo2 Dcn, Serping1, Ramp2, Ly6c1, Ptprb, Tmem100, Timp3, Calcrl, Ltbp4, Pcolce2 S100a9, Npnt, Ogn, Cavin2, Limch1, S100a8, Gpx3, Cldn5, Sparcl1, Jun Negative: Cd74, Lyz2, H2-Ab1, H2-Aa, H2-Eb1, Ccl5, Chil3, Ccl6, Tmsb4x, Fau Gzma, Rps8, Rps27, Rps24, Rplp1, Rpl13a, Rps29, Cst3, Tpt1, Ctss Rpl41, Cd52, Rpl37a, Rps11, Ftl1-ps1, Rpl39, Tyrobp, Rpl17, Rpl23, Rpl32 PC_ 3 Positive: Cd74, H2-Ab1, H2-Aa, H2-Eb1, Cst3, Mgp, Ccl5, S100a9, S100a8, Il1b Cd52, Inmt, Gzma, Rps27, Gsn, Rps24, Tpt1, Igkc, Rps29, Rpl13a Srgn, S100a6, Rps21, Fau, Malat1, Rpl17, Rpl34, Rps16, Rpl12, Rps8 Negative: Lyz2, Chil3, Ccl6, Ftl1-ps1, Ear2, Ctsd, Ctss, Fth1, Lgals3, Cd9 Cmss1, Abcg1, Ear1, Atp6v0d2, Lpl, Cxcl2, Cybb, Gm42418, Grik3, Mrc1 Mpeg1, Krt79, Slpi, Ctsz, Marco, Fabp5, Fabp1, Psap, Ctsk, Tnfaip2 PC_ 4 Positive: Mgp, Inmt, Gsn, Bgn, Lyz2, Col1a2, Dcn, Fth1, Serping1, Apoe Chil3, Pcolce2, Ogn, Fmo2, Npnt, Col3a1, Igfbp6, Ccl6, Sod3, Ltbp4 Gpx3, Limch1, Col1a1, Eln, Ftl1-ps1, Sparcl1, Prelp, Mfap4, Dpt, C3 Negative: Epas1, Ly6a, Ramp2, Calcrl, Ptprb, Tmem100, Ly6c1, Ctla2a, Cldn5, Hpgd Tspan7, Cavin2, Aqp1, Adgrf5, Cdh5, Tm4sf1, Ehd4, Gpihbp1, Cd36, Cd74 Ace, Egfl7, Clic5, Pecam1, Bmpr2, Icam2, Eng, Sema3c, Pltp, Slco2a1 PC_ 5 Positive: Ccl5, Gzma, Nkg7, Malat1, AW112010, Ms4a4b, Ly6c2, Gm2682, Trbc2, Rpl13a Cd52, Ptprcap, Lgals1, Rps27, Gzmb, Klra4, Prf1, Hcst, Tmsb10, Trbc1 Mir142hg, Rac2, Gimap6, Id2, Ptpn18, Skap1, Rps24, Hmgb2, Rpl12, Cd3d Negative: Cd74, H2-Ab1, H2-Aa, H2-Eb1, Cst3, Lyz2, Chil3, Ccl6, Fth1, Ftl1-ps1 Apoe, Ctss, Mt1, Psap, Cxcl2, Mgl2, C1qa, Ear2, Egr1, Fos Ifitm3, Gpx1, C1qc, C1qb, Ccl17, Lgals3, Cd9, Grik3, Ctsz, Alox5ap [1] "Calculating PC distance matrix..." [1] "Defining neighborhoods..." [1] "Computing pANN across all pK..." [1] "pK = 0.005..." [1] "pK = 0.01..." [1] "pK = 0.02..." [1] "pK = 0.03..." [1] "pK = 0.04..." [1] "pK = 0.05..." [1] "pK = 0.06..." [1] "pK = 0.07..." [1] "pK = 0.08..." [1] "pK = 0.09..." [1] "pK = 0.1..." [1] "pK = 0.11..." [1] "pK = 0.12..." [1] "pK = 0.13..." [1] "pK = 0.14..." [1] "pK = 0.15..." [1] "pK = 0.16..." [1] "pK = 0.17..." [1] "pK = 0.18..." [1] "pK = 0.19..." [1] "pK = 0.2..." [1] "pK = 0.21..." [1] "pK = 0.22..." [1] "pK = 0.23..." [1] "pK = 0.24..." [1] "pK = 0.25..." [1] "pK = 0.26..." [1] "pK = 0.27..." [1] "pK = 0.28..." [1] "pK = 0.29..." [1] "pK = 0.3..." > sweep.stats <- summarizeSweep(sweep.res.list, GT = FALSE) > bcmvn <- find.pK(sweep.stats)# 查找最佳 pK 值 NULL > best_pK <- bcmvn$pK[which.max(bcmvn$BCmetric)] # 提取最佳 pK > best_pN <- sweep.stats$pN[which.max(sweep.stats$BCreal)]# 提取最佳 pN > best_pK <- as.numeric(as.character(best_pK)) > best_pN <- as.numeric(as.character(best_pN)) > best_pK [1] 0.01 > best_pN [1] 0.1 > homotypic.prop <- modelHomotypic(seurat_obj1$seurat_clusters)# 估计的同源双细胞 > nExp_poi <- round(0.075 *nrow(seurat_obj1@meta.data)) # 计算总的双细胞数量(10X文档推荐双细胞形成率为 7.5%) > nExp_poi.adj <- round(nExp_poi*(1-homotypic.prop)) # 计算异源双细胞数量 > seurat_obj1 <- doubletFinder(seurat_obj1, + PCs = 1:20, + pN = best_pN, + pK = best_pK, + nExp = nExp_poi.adj, + reuse.pANN = FALSE, + sct = TRUE) 错误于xtfrm.data.frame(x): 无法 xtfrm 数据帧 > seurat_obj1 <- doubletFinder(seurat_obj1, + PCs = 1:20, + pN = best_pN, + pK = best_pK, + nExp = nExp_poi.adj, + reuse.pANN = FALSE, + sct = TRUE) 错误于xtfrm.data.frame(x): 无法 xtfrm 数据
05-17
下载前可以先看下教程 https://pan.quark.cn/s/a4b39357ea24 在网页构建过程中,表单(Form)扮演着用户网站之间沟通的关键角色,其主要功能在于汇集用户的各类输入信息。 JavaScript作为网页开发的核心技术,提供了多样化的API和函数来操作表单组件,诸如input和select等元素。 本专题将详细研究如何借助原生JavaScript对form表单进行视觉优化,并对input输入框select下拉框进行功能增强。 一、表单基础1. 表单组件:在HTML语言中,<form>标签用于构建一个表单,该标签内部可以容纳多种表单组件,包括<input>(输入框)、<select>(下拉框)、<textarea>(多行文本输入区域)等。 2. 表单参数:诸如action(表单提交的地址)、method(表单提交的协议,为GET或POST)等属性,它们决定了表单的行为特性。 3. 表单行为:诸如onsubmit(表单提交时触发的动作)、onchange(表单元素值变更时触发的动作)等事件,能够通过JavaScript进行响应式处理。 二、input元素视觉优化1. CSS定制:通过设定input元素的CSS属性,例如border(边框)、background-color(背景色)、padding(内边距)、font-size(字体大小)等,能够调整其视觉表现。 2. placeholder特性:提供预填的提示文字,以帮助用户明确输入框的预期用途。 3. 图标集成:借助:before和:after伪元素或者额外的HTML组件结合CSS定位技术,可以在输入框中嵌入图标,从而增强视觉吸引力。 三、select下拉框视觉优化1. 复选功能:通过设置multiple属性...
【EI复现】基于深度强化学习的微能源网能量管理优化策略研究(Python代码实现)内容概要:本文围绕“基于深度强化学习的微能源网能量管理优化策略”展开研究,重点探讨了如何利用深度强化学习技术对微能源系统进行高效的能量管理优化调度。文中结合Python代码实现,复现了EI级别研究成果,涵盖了微电网中分布式能源、储能系统及负荷的协调优化问题,通过构建合理的奖励函数状态空间模型,实现对复杂能源系统的智能决策支持。研究体现了深度强化学习在应对不确定性可再生能源出力、负荷波动等挑战中的优势,提升了系统运行的经济性稳定性。; 适合人群:具备一定Python编程基础和机器学习背景,从事能源系统优化、智能电网、强化学习应用等相关领域的研究生、科研人员及工程技术人员。; 使用场景及目标:①应用于微能源网的能量调度优化控制,提升系统能效经济效益;②为深度强化学习在能源管理领域的落地提供可复现的技术路径代码参考;③服务于学术研究论文复现,特别是EI/SCI级别高水平论文的仿真实验部分。; 阅读建议:建议读者结合提供的Python代码进行实践操作,深入理解深度强化学习算法在能源系统建模中的具体应用,重点关注状态设计、动作空间定义奖励函数构造等关键环节,并可进一步扩展至多智能体强化学习或其他优化算法的融合研究。
评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wwwarewow

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值