dsolve('equation')
dsolve('equation','condition')
dsolve('equation','v') 给出微分方程的解析解,表示为v的函数
dsolve('equation','condition','v')
例子:
计算微分方程dy/dx+3xy=xexp(-x*x)的通解:
计算微分方程x*dy+2y-exp(x)=0在初始条件y(1)=2e的特解:
ans =
C2*exp(-(3*x^2)/2) + exp(x^2/2)*exp(-(3*x^2)/2)
>> dsolve('x*Dy+2*y-exp(x)=0','y(1)=2*exp(1)','x')
ans =
(2*exp(1))/x^2 + (exp(x)*(x - 1))/x^2
>> dsolve('D2y+2*Dy+exp(x)=0','x')
ans =
C6 - exp(x)/3 + C7*exp(-2*x)

本文介绍如何利用dsolve函数解析求解不同类型的微分方程,包括一阶和二阶微分方程,并展示如何指定初始条件来获得特定解。通过几个实例演示了dsolve的基本用法。
1040

被折叠的 条评论
为什么被折叠?



