题目:
求:
limx→0(esinx+sinx)1sinx−(etanx+tanx)1tanxx3
\lim _{x \rightarrow 0} \frac{\left(e^{\sin x}+\sin x\right)^{\frac{1}{\sin x}}-\left(e^{\tan x}+\tan x\right)^{\frac{1}{\tan x}}}{x^{3}}
x→0limx3(esinx+sinx)sinx1−(etanx+tanx)tanx1
参考答案:
设函数
f(x)=(ex+x)1xf(x)=(e^x+x)^{\frac{1}{ x}}f(x)=(ex+x)x1
取对数
lnf(x)=ln(ex+x)x\ln f(x)=\frac{\ln(e^x+x)}{x}lnf(x)=xln(ex+x)
求导
f′(x)f(x)=ex+1ex+x⋅x−ln(ex+x)x2\frac{f'(x)}{f(x)}=\frac{\frac{e^x+1}{e^x+x}\cdot x-\ln(e^x+x)}{x^2}f(x)f′(x)=x2ex+xex+1⋅x−ln(ex+x)
于是
f′(x)=ex+1ex+x⋅x−ln(ex+x)x2⋅(ex+x)1xf'(x)=\frac{\frac{e^x+1}{e^x+x}\cdot x-\ln(e^x+x)}{x^2}\cdot(e^x+x)^{\frac{1}{x}}f′(x)=x2ex+xex+1⋅x−ln(ex+x)⋅(ex+x)x1
下面来分别求出
limx→0ex+1ex+x⋅x−ln(ex+x)x2和limx→0(ex+x)1x\lim_{x\to 0}\frac{\frac{e^x+1}{e^x+x}\cdot x-\ln(e^x+x)}{x^2}\quad\text{和}\quad\lim_{x\to 0}(e^x+x)^{\frac{1}{x}}x→0limx2ex+xex+1⋅x−ln(ex+x)和x→0lim(ex+x)x1
limx→0ex+1ex+x⋅x−ln(ex+x)x2=limx→0ex(ex+x)−(ex+1)(ex+1)(ex+x)2⋅x2x=limx→0ex(ex+x)−(ex+1)22(ex+x)2=−32\begin{aligned} \lim_{x\to 0}\frac{\frac{e^x+1}{e^x+x}\cdot x-\ln(e^x+x)}{x^2}&=\lim_{x\to 0}\frac{\frac{e^x(e^x+x)-(e^x+1)(e^x+1)}{(e^x+x)^2}\cdot x}{2x}\\ &=\lim_{x\to 0}\frac{e^x(e^x+x)-(e^x+1)^2}{2(e^x+x)^2}\\ &=-\frac{3}{2} \end{aligned}x→0limx2ex+xex+1⋅x−ln(ex+x)=x→0lim2x(ex+x)2ex(ex+x)−(ex+1)(ex+1)⋅x=x→0lim2(ex+x)2ex(ex+x)−(ex+1)2=−23
limx→0(ex+x)1x=elimx→0ln(ex+x)x=elimx→0ex+x−1x=elimx→0ex+1=e2\begin{aligned}
\lim_{x\to 0}(e^x+x)^{\frac{1}{x}}&=e^{\lim\limits_{x\to 0}\frac{\ln(e^x+x)}{x}}\\
&=e^{\lim\limits_{x\to 0}\frac{e^x+x-1}{x}}\\
&=e^{\lim\limits_{x\to 0}e^x +1}\\
&=e^2
\end{aligned}x→0lim(ex+x)x1=ex→0limxln(ex+x)=ex→0limxex+x−1=ex→0limex+1=e2
所以
limx→0f(x)=−32e2\lim_{x\to 0}f(x)=-\frac{3}{2}e^2x→0limf(x)=−23e2
根据拉格拉日中值定理
limx→0(esinx+sinx)1sinx−(etanx+tanx)1tanxx3=limx→0f(sinx)−f(tanx)x3=limx→0f′(ξ)(sinx−tanx)x3ξ∈(sinx,tanx)=limx→0f′(ξ)limx→0sinx−tanxx3=−32e2⋅−12=34e2\begin{aligned}
\lim _{x \rightarrow 0} \frac{\left(e^{\sin x}+\sin x\right)^{\frac{1}{\sin x}}-\left(e^{\tan x}+\tan x\right)^{\frac{1}{\tan x}}}{x^{3}}&=\lim_{x\to 0}\frac{f(\sin x)-f(\tan x)}{x^3}\\
&=\lim_{x\to 0}\frac{f'(\xi)(\sin x-\tan x)}{x^3}\qquad \xi\in(\sin x,\tan x)\\
&=\lim_{x\to 0}f'(\xi)\lim_{x\to 0}\frac{\sin x-\tan x}{x^3}\\
&=-\frac{3}{2}e^2\cdot-\frac{1}{2}\\
&=\frac{3}{4}e^2
\end{aligned}x→0limx3(esinx+sinx)sinx1−(etanx+tanx)tanx1=x→0limx3f(sinx)−f(tanx)=x→0limx3f′(ξ)(sinx−tanx)ξ∈(sinx,tanx)=x→0limf′(ξ)x→0limx3sinx−tanx=−23e2⋅−21=43e2
2021年1月7日23:24:58