题目(2021年中科大考验数学分析考试):
求定积分:
∫0πsin(2n+1)xsin(x)\int_0^\pi\frac{\sin(2n+1)x}{\sin(x)}∫0πsin(x)sin(2n+1)x
参考答案:
∫0πsin(2n+1)xsin(x) dx=∫0πsin(2n−1)xcos(2x)+cos(2n−1)xsin(2x)sin(x) dx=∫0πsin(2n−1)x⋅(1−2sin2x)+2cos(2n−1)x⋅sin(x)cos(x)sin(x) dx=∫0πsin(2n−1)xsinx+2cos(2n−1)x⋅cos(x)−2sin(2n−1)x⋅sin(x) dx=∫0πsin(2n−1)xsinx dx+2∫0πcos(2n)x dx=∫0πsin(2n−1)xsinx dx=∫0πsinxsinx dx=π\begin{aligned}
\int_0^\pi\frac{\sin(2n+1)x}{\sin(x)}\,\mathrm{d}x&=
\int_0^\pi\frac{\sin(2n-1)x\cos(2x)+\cos(2n-1)x\sin(2x)}{\sin(x)}\,\mathrm{d}x\\
&=\int_0^\pi\frac{\sin(2n-1)x\cdot(1-2\sin^2x)+2\cos(2n-1)x\cdot\sin(x)\cos(x)}{\sin(x)}\,\mathrm{d}x\\
&=\int_0^\pi\frac{\sin(2n-1)x}{\sin x }+2\cos(2n-1)x\cdot\cos(x)-2\sin(2n-1)x\cdot\sin(x)\,\mathrm{d}x\\
&=\int_0^\pi\frac{\sin(2n-1)x}{\sin x}\,\mathrm{d}x+2\int_0^\pi\cos(2n)x\,\mathrm{d}x\\
&=\int_0^\pi\frac{\sin(2n-1)x}{\sin x}\,\mathrm{d}x\\
&=\int_0^\pi\frac{\sin x}{\sin x}\,\mathrm{d}x\\
&=\pi
\end{aligned}∫0πsin(x)sin(2n+1)xdx=∫0πsin(x)sin(2n−1)xcos(2x)+cos(2n−1)xsin(2x)dx=∫0πsin(x)sin(2n−1)x⋅(1−2sin2x)+2cos(2n−1)x⋅sin(x)cos(x)dx=∫0πsinxsin(2n−1)x+2cos(2n−1)x⋅cos(x)−2sin(2n−1)x⋅sin(x)dx=∫0πsinxsin(2n−1)xdx+2∫0πcos(2n)xdx=∫0πsinxsin(2n−1)xdx=∫0πsinxsinxdx=π
2020年12月30日23:36:47