题目
limx→2x−2+x−2x2−4\lim_{x\to 2}\frac{\sqrt{x}-\sqrt{2}+\sqrt{x-2}}{\sqrt{x^2-4}} x→2limx2−4x−2+x−2
解答
limx→2x−2+x−2x2−4=limx→2x−2+x−2x−2x+2=12limx→2x−2+x−2x−2=12(limx→2x−2x−2+1)=12limx→2(x−2)(x+2)x−2(x+2)+12=12limx→2(x−2)2x−2(x+2)+12=12limx→2x−2x+2+12=12\begin{aligned} \lim_{x\to 2}\frac{\sqrt{x}-\sqrt{2}+\sqrt{x-2}}{\sqrt{x^2-4}}&=\lim_{x\to 2}\frac{\sqrt{x}-\sqrt{2}+\sqrt{x-2}}{\sqrt{x-2}\sqrt{x+2}}\\[8pt] &=\frac{1}{2}\lim_{x\to 2}\frac{\sqrt{x}-\sqrt{2}+\sqrt{x-2}}{\sqrt{x-2}}\\[8pt] &=\frac{1}{2}(\lim_{x\to 2}\frac{\sqrt{x}-\sqrt{2}}{\sqrt{x-2}}+1)\\[8pt] &=\frac{1}{2}\lim_{x\to 2}\frac{(\sqrt{x}-\sqrt{2})(\sqrt{x}+\sqrt{2})}{\sqrt{x-2}(\sqrt{x}+\sqrt{2})}+\frac{1}{2}\\[8pt] &=\frac{1}{2}\lim_{x\to 2}\frac{(\sqrt{x-2})^2}{\sqrt{x-2}(\sqrt{x}+\sqrt{2})}+\frac{1}{2}\\[8pt] &=\frac{1}{2}\lim_{x\to 2}\frac{\sqrt{x-2}}{\sqrt{x}+\sqrt{2}}+\frac{1}{2}\\[8pt] &=\frac{1}{2}\\[8pt] \end{aligned}x→2limx2−4x−2+x−2=x→2limx−2x+2x−2+x−2=21x→2limx−2x−2+x−2=21(x→2limx−2x−2+1)=21x→2limx−2(x+2)(x−2)(x+2)+21=21x→2limx−2(x+2)(x−2)2+21=21x→2limx+2x−2+21=21
博客给出一道极限运算题目,即求x趋近于2时,(x² - 4)/(x - 2) + √(x - 2)的极限。随后详细展示了解答过程,通过一系列化简计算得出该极限的值为1/2。
1796





