基本差分2:借教室(洛谷 P1083)

博客探讨了如何使用二分法和差分来解决洛谷P1083问题。在面对100万张订单时,通过二分查找优化外层循环,但单纯二分仍然导致超时。为解决内循环的效率问题,引入差分技术,确保内循环在处理区间修改时达到O(1)的时间复杂度。

P1083 借教室

二分答案+差分

假设有100万张订单,我们先看第50万张订单能否满足,如果能满足,那么看第75万订单;如果不能满足,我们看第25万订单能否满足......一半一半,这就是二分。

但二分以后,还是会超时。一共两重循环,外循环做了二分,所以外循环是log2(1000000)。外循环第一次要把第一到第五十号全部全部遍历一遍,而内循环对每一张订单都要检查,最惨的情况,一张订单可能覆盖一号到1000000号...这样下来,远远超过一个亿,严重超时!!!

外循环已经做到了二分,如果内循环对每一张订单一张一张的检查,太慢了!但好在每一张订单是区间统一修改,这个时候就要做差分!!时间复杂度O(1)时间

 

#include <bits/stdc++.h>
using namespace std;
const int N=1000000+10;//一个上线,无论天数还是订单数都是1000000

struct node{
	int x;
	int y;
	int z; 
}q[N];

int n,m,ans,a[N],b[N];

inline int read()//快速读入,订单不为负
{
	int x=0,f=1;
	char ch=getchar();
	while(!isdigit(ch)) ch=getchar();
	while(isdigit(ch))
	{
		x=x*10+ch-'0';
		ch=getchar();
	}
	return x;
}

bool check(int x)
{
	memset(b,0,sizeof(b));
	int s=0;
	bool f=true;
	
	for(int i=1;i<=x;i++)
	{
		b[q[i].x]+=q[i].z;
		b[q[i].y+1]-=q[i].z;
	}
	
	for(int i=1;i<=n;i+
【电动汽车充电站有序充电调度的分散式优化】基于蒙特卡诺和拉格朗日的电动汽车优化调度(分时电价调度)(Matlab代码实现)内容概要:本文介绍了基于蒙特卡洛和拉格朗日方法的电动汽车充电站有序充电调度优化方案,重点在于采用分散式优化策略应对分时电价机制下的充电需求管理。通过构建数学模型,结合不确定性因素如用户充电行为和电网负荷波动,利用蒙特卡洛模拟生成大量场景,并运用拉格朗日松弛法对复杂问题进行分解求解,从而实现全局最优或近似最优的充电调度计划。该方法有效降低了电网峰值负荷压力,提升了充电站运营效率与经济效益,同时兼顾用户充电便利性。 适合人群:具备一定电力系统、优化算法和Matlab编程基础的高校研究生、科研人员及从事智能电网、电动汽车相关领域的工程技术人员。 使用场景及目标:①应用于电动汽车充电站的日常运营管理,优化充电负荷分布;②服务于城市智能交通系统规划,提升电网与交通系统的协同水平;③作为学术研究案例,用于验证分散式优化算法在复杂能源系统中的有效性。 阅读建议:建议读者结合Matlab代码实现部分,深入理解蒙特卡洛模拟与拉格朗日松弛法的具体实施步骤,重点关注场景生成、约束处理与迭代收敛过程,以便在实际项目中灵活应用与改进。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值