【机器学习】决定系数(R²:Coefficient of Determination)

决定系数R^{2},也称为 R 平方,是一种用于衡量回归模型预测效果的统计指标。它表示了模型解释目标变量总变异的程度,数值介于 0 和 1 之间,数值越接近 1 表明模型的解释力越强。

1. R^{2} 的定义和公式

R^{2} 的公式如下:

R^2 = 1 - \frac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{\sum_{i=1}^n (y_i - \bar{y})^2}

其中:

  • y_{i}​ 是真实值。
  • \hat{y_{i}} 是模型的预测值。
  • \bar{y} 是真实值的平均值。
  • \sum_{i=1}^n (y_i - \hat{y}_i)^2 是残差平方和 (Residual Sum of Squares, RSS)。
  • \sum_{i=1}^n (y_i - \bar{y})^2 是总平方和 (Total Sum of Squares, TSS)。

从公式可以看出,R^2 表示残差平方和占总平方和的比例。换句话说,R^2 越接近 1,表示模型的预测越接近真实值,模型解释越充分。

2. R^2 的计算步骤

计算 R^2 的步骤如下:

  1. 计算真实值的平均值 \bar{y}​。
  2. 计算残差平方和 \sum (y_i - \hat{y}_i)^2
  3. 计算总平方和 \sum (y_i - \bar{y})^2
  4. 计算 R^2,即使用公式 R^2 = 1 - \frac{\text{RSS}}{\text{TSS}}​。

3. R^2 的解释和意义

  • 解释度R^2 值表示自变量解释因变量变异的比例。例如,R^2 = 0.8 表示模型能解释 80% 的目标变量变异。
  • 值域R^2 的取值范围通常为 [0, 1]。0 表示模型无法解释任何目标变量的变异,1 表示模型可以完全解释目标变量的变异。
  • 负值的情况:在某些情况下,当模型预测效果极差时(例如,模型欠拟合),R^2 可能为负数。这表示预测值甚至比用平均值预测的效果更差。

4. R^2 的优缺点

优点

  • 直观解释R^2 直接表示了模型对目标变量的解释力。
  • 适用性广:广泛应用于回归模型的效果评价。

缺点

  • 对样本大小敏感:在小样本数据中,R^2 值容易偏高,可能夸大模型的预测效果。
  • 对异常值敏感:由于平方的存在,R^2 对异常值敏感,异常值可能会过度影响结果。
  • 无法区分方向性:仅仅反映解释力,不反映模型预测的方向性,容易掩盖预测偏差。

5. R^2 的应用

在回归分析、机器学习和经济学等领域,R^2 是一种常用的评价指标。其应用场景包括:

  • 回归模型效果评价:常用于衡量线性回归、多项式回归等模型的解释力。
  • 经济和金融数据分析:例如评估某些经济指标对 GDP 增长的解释力。
  • 机器学习模型调优:用于评估模型的拟合程度,帮助选择合适的模型或调参。

6. R^2 与其他误差指标的对比

指标R^2MAE、RMSE
计算方式残差平方和和总平方和之比绝对误差或平方误差
值域[0, 1](可能为负数)非负值
异常值敏感性MAE 低,RMSE 高
解释力表示模型解释的变异比例表示模型预测误差的均值

7.Python 实现代码

以下是计算 R^2 的 Python 代码:

import numpy as np

def r2_score(y_true, y_pred):
    ss_res = np.sum((y_true - y_pred) ** 2)
    ss_tot = np.sum((y_true - np.mean(y_true)) ** 2)
    return 1 - (ss_res / ss_tot)

# 示例
y_true = np.array([3, -0.5, 2, 7])
y_pred = np.array([2.5, 0.0, 2, 8])

result = r2_score(y_true, y_pred)
print("R^2:", result)

运行结果

R^2: 0.9486081370449679

说明

  1. y_true 是真实值的数组,y_pred 是预测值的数组。
  2. ss_res 是残差平方和,表示误差的总量。
  3. ss_tot 是总平方和,表示目标变量的总变异。
  4. 1 - (ss_res / ss_tot) 得出 R^2 值,表示模型对数据变异的解释程度。

图中 R^2 的值接近 1 表示模型的预测接近真实值,具有较高的解释力。

8.R^2 图解示例

下面将生成一个包含 R^2 计算图解的图示,以便更清楚地理解 R^2 在模型解释力上的作用。

上图展示了 R^2 的计算过程,其中:

  • 蓝色圆点连线表示真实值 y
  • 红色叉点连线表示模型的预测值 \hat{y}​。
  • 每条灰色虚线表示预测值与真实值之间的差距,即残差。
# Re-import necessary libraries due to session context reset
import numpy as np
import matplotlib.pyplot as plt

# Generate sample data for illustration
np.random.seed(0)
x = np.linspace(0, 10, 10)
y_true = 2 * x + 1                       # True relationship (e.g., ground truth values)
y_pred = y_true + np.random.normal(0, 2, 10) # Predicted values with random noise

# Calculate R^2
ss_res = np.sum((y_true - y_pred) ** 2)   # Residual sum of squares
ss_tot = np.sum((y_true - np.mean(y_true)) ** 2) # Total sum of squares
r2_value = 1 - (ss_res / ss_tot)

# Plotting true vs predicted values and lines indicating residuals
plt.figure(figsize=(10, 6))
plt.plot(x, y_true, label="True Values", color="blue", marker='o')
plt.plot(x, y_pred, label="Predicted Values", color="red", marker='x')
plt.hlines(np.mean(y_true), x[0], x[-1], colors='green', linestyles='dashed', label='Mean of True Values')

# Add residual lines
for i in range(len(x)):
    plt.plot([x[i], x[i]], [y_true[i], y_pred[i]], color='gray', linestyle='dotted')

# Adding text and labels
plt.xlabel("x")
plt.ylabel("y")
plt.title(f"Illustration of R² (Coefficient of Determination)\nR² = {r2_value:.2f}")
plt.legend()
plt.grid(True)
plt.show()

为了更直观地理解 R^2,我们可以用一个散点图展示真实值和预测值的分布:

  1. 绘制真实值与预测值的散点图:展示所有数据点的真实值与预测值之间的差异。
  2. 展示总平方和 (TSS):每个数据点到真实值均值的垂直线表示目标变量的总变异。
  3. 展示残差平方和 (RSS):每个数据点到预测值的垂直线表示模型预测误差。
  4. 理解解释力:图中 R^2 值越大,模型预测值越接近真实值,即解释力越高。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值