Algorithm I
Algorithm I (Inverse in place). Replace X[1]X[2]… X[n], a permutation of
{1,2,…,n}, by its inverse. This algorithm is due to Bing-Chao Huang [Inf.
Proc. Letters 12 (1981), 237-238].
I1. [Initialize.] Set m <– n, j <– -1.
I2. [Next element.] Set i <– X[m]. If i < 0, go to step I5 (the element has
already been processed).
I3. [Invert one.] (At this point j < 0 and i = X[m]. If m is not the largest ele-
ment of its cycle, the original permutation had X[-j] = m.) Set X[m] <– j,
j <– -m, m <– i, i <– X[m].
I4. [End of cycle?] If i > 0, go back to I3 (the cycle has not ended); otherwise
set i <– j. (In the latter case, the original permutation had X[-j] = m, and
m is largest in its cycle.)
I5. [Store final value.] Set X[m] <– -i. (Originally X[-i] was equal to m.)
I6. [Loop on m.] Decrease m by 1. If m > 0, go back to I2; otherwise the
algorithm terminates. |
Data table
Java program
/**
* Created with IntelliJ IDEA.
* User: 1O1O
* Date: 12/18/13
* Time: 6:52 PM
* :)~
* Inverse in place:ALGORITHMS
*/
public class Main {
public static void main(String[] args) {
int[] X = new int[7];
int m;
int n=6;
int i;
int j;
X[1]=6;
X[2]=2;
X[3]=1;
X[4]=5;
X[5]=4;
X[6]=3;
/*Print the initial X[i] (1<=i<=n)*/
System.out.println("The initial X[i] (1<=i<=n) is:");
for(int k=1; k<=n; k++){
System.out.println("X["+k+"]="+X[k]);
}
System.out.println();
/*Print the initial permutation*/
System.out.println("The initial permutation is:");
System.out.print("| ");
for(int k=1; k<=n; k++){
System.out.print((char)(k+96));
System.out.print(' ');
}
System.out.print("|");
System.out.println();
System.out.print("| ");
for(int k=1; k<=n; k++){
System.out.print((char)(X[k]+96));
System.out.print(' ');
}
System.out.print("|");
System.out.println();
System.out.println();
m=n; /*I1*/
j=-1;
do{
i = X[m]; /*I2*/
if(i < 0){
}else {
do{
X[m] = j; /*I3*/
j = -m;
m = i;
i = X[m];
}while (i > 0); /*I4*/
i = j;
}
X[m] = -i; /*I5*/
m--;
}while (m > 0);
/*Print the final X[i] (1<=i<=n) after inversed*/
System.out.println("The final X[i] (1<=i<=n) after inversed is:");
for(int k=1; k<=n; k++){
System.out.println("X["+k+"]="+X[k]);
}
System.out.println();
/*Print the final permutation after inversed*/
System.out.println("The final permutation after inversed is:");
System.out.print("| ");
for(int k=1; k<=n; k++){
System.out.print((char)(k+96));
System.out.print(' ');
}
System.out.print("|");
System.out.println();
System.out.print("| ");
for(int k=1; k<=n; k++){
System.out.print((char)(X[k]+96));
System.out.print(' ');
}
System.out.print("|");
System.out.println();
}
}
Outputs
The initial X[i] (1<=i<=n) is:
X[1]=6
X[2]=2
X[3]=1
X[4]=5
X[5]=4
X[6]=3
The initial permutation is:
| a b c d e f |
| f b a e d c |
The final X[i] (1<=i<=n) after inversed is:
X[1]=3
X[2]=2
X[3]=6
X[4]=5
X[5]=4
X[6]=1
The final permutation after inversed is:
| a b c d e f |
| c b f e d a |
Reference
<< The Art of Computer Programming: Fundamental Algorithms >> VOLUME 1, DONALD E. KNUTH