Algorithm: Inverse in place

本文介绍了Bing-Chao Huang提出的逆置排列算法,该算法用于将排列及其逆排列之间的转换。通过初始化、遍历元素、逆置操作等步骤,实现了排列的逆置。提供了Java程序实现,展示了初始排列到逆置后的排列变化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Algorithm I

Algorithm I (Inverse in place). Replace X[1]X[2]… X[n], a permutation of
{1,2,…,n}, by its inverse. This algorithm is due to Bing-Chao Huang [Inf.
Proc. Letters 12 (1981), 237-238].
I1. [Initialize.] Set m <– n, j <– -1.
I2. [Next element.] Set i <– X[m]. If i < 0, go to step I5 (the element has
already been processed).
I3. [Invert one.] (At this point j < 0 and i = X[m]. If m is not the largest ele-
ment of its cycle, the original permutation had X[-j] = m.) Set X[m] <– j,
j <– -m, m <– i, i <– X[m].
I4. [End of cycle?] If i > 0, go back to I3 (the cycle has not ended); otherwise
set i <– j. (In the latter case, the original permutation had X[-j] = m, and
m is largest in its cycle.)
I5. [Store final value.] Set X[m] <– -i. (Originally X[-i] was equal to m.)
I6. [Loop on m.] Decrease m by 1. If m > 0, go back to I2; otherwise the
algorithm terminates. |


Data table

这里写图片描述


Java program

/**
 * Created with IntelliJ IDEA.
 * User: 1O1O
 * Date: 12/18/13
 * Time: 6:52 PM
 * :)~
 * Inverse in place:ALGORITHMS
 */
public class Main {

    public static void main(String[] args) {
        int[] X = new int[7];
        int m;
        int n=6;
        int i;
        int j;
        X[1]=6;
        X[2]=2;
        X[3]=1;
        X[4]=5;
        X[5]=4;
        X[6]=3;

        /*Print the initial X[i] (1<=i<=n)*/
        System.out.println("The initial X[i] (1<=i<=n) is:");
        for(int k=1; k<=n; k++){
            System.out.println("X["+k+"]="+X[k]);
        }
        System.out.println();

        /*Print the initial permutation*/
        System.out.println("The initial permutation is:");
        System.out.print("| ");
        for(int k=1; k<=n; k++){
            System.out.print((char)(k+96));
            System.out.print(' ');
        }
        System.out.print("|");
        System.out.println();
        System.out.print("| ");
        for(int k=1; k<=n; k++){
            System.out.print((char)(X[k]+96));
            System.out.print(' ');
        }
        System.out.print("|");
        System.out.println();
        System.out.println();

        m=n;                       /*I1*/
        j=-1;

        do{
            i = X[m];                 /*I2*/
            if(i < 0){
            }else {
                do{
                    X[m] = j;               /*I3*/
                    j = -m;
                    m = i;
                    i = X[m];
                }while (i > 0);            /*I4*/
                i = j;
            }
            X[m] = -i;                  /*I5*/
            m--;

        }while (m > 0);

        /*Print the final X[i] (1<=i<=n) after inversed*/
        System.out.println("The final X[i] (1<=i<=n) after inversed is:");
        for(int k=1; k<=n; k++){
            System.out.println("X["+k+"]="+X[k]);
        }
        System.out.println();

        /*Print the final permutation after inversed*/
        System.out.println("The final permutation after inversed is:");
        System.out.print("| ");
        for(int k=1; k<=n; k++){
            System.out.print((char)(k+96));
            System.out.print(' ');
        }
        System.out.print("|");
        System.out.println();
        System.out.print("| ");
        for(int k=1; k<=n; k++){
            System.out.print((char)(X[k]+96));
            System.out.print(' ');
        }
        System.out.print("|");
        System.out.println();
    }
}

Outputs

The initial X[i] (1<=i<=n) is:
X[1]=6
X[2]=2
X[3]=1
X[4]=5
X[5]=4
X[6]=3

The initial permutation is:
| a b c d e f |
| f b a e d c |

The final X[i] (1<=i<=n) after inversed is:
X[1]=3
X[2]=2
X[3]=6
X[4]=5
X[5]=4
X[6]=1

The final permutation after inversed is:
| a b c d e f |
| c b f e d a |

Reference

<< The Art of Computer Programming: Fundamental Algorithms >> VOLUME 1, DONALD E. KNUTH

内容概要:本文详细介绍了如何使用STM32微控制器精确控制步进电机,涵盖了从原理到代码实现的全过程。首先,解释了步进电机的工作原理,包括定子、转子的构造及其通过脉冲信号控制转动的方式。接着,介绍了STM32的基本原理及其通过GPIO端口输出控制信号,配合驱动器芯片放大信号以驱动电机运转的方法。文中还详细描述了硬件搭建步骤,包括所需硬件的选择与连接方法。随后提供了基础控制代码示例,演示了如何通过定义控制引脚、编写延时函数和控制电机转动函数来实现步进电机的基本控制。最后,探讨了进阶优化技术,如定时器中断控制、S形或梯形加减速曲线、微步控制及DMA传输等,以提升电机运行的平稳性和精度。 适合人群:具有嵌入式系统基础知识,特别是对STM32和步进电机有一定了解的研发人员和技术爱好者。 使用场景及目标:①学习步进电机与STM32的工作原理及二者结合的具体实现方法;②掌握硬件连接技巧,确保各组件间正确通信;③理解并实践基础控制代码,实现步进电机的基本控制;④通过进阶优化技术的应用,提高电机控制性能,实现更精细和平稳的运动控制。 阅读建议:本文不仅提供了详细的理论讲解,还附带了完整的代码示例,建议读者在学习过程中动手实践,结合实际硬件进行调试,以便更好地理解和掌握步进电机的控制原理和技术细节。同时,对于进阶优化部分,可根据自身需求选择性学习,逐步提升对复杂控制系统的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值