高等数学学习笔记1

本文探讨了极限运算法则、Stolz定理、夹逼定理等在无穷级数中的应用,通过具体例子解析了1/n和n/n+1等序列的极限,以及涉及对数、三角函数和指数函数的极限计算。还涉及了导数及其求解技巧,如arcsin、arccos和arctan的导数计算。

关于极限

二项式定理

(a+b)n=Cn0an+Cn1an−1b+Cn2an−2b2+⋯+Cnn−1abn−1+Cnnbn=∑i=0nCnian−ibi (a + b)^n = C_n^0a^n + C_n^1a^{n-1}b + C_n^2a^{n-2}b^2 + \cdots + C_n^{n-1}ab^{n-1} + C_n^nb^n = \sum_{i=0}^{n}C_n^i a^{n-i}b^i (a+b)n=Cn0an+Cn1an1b+Cn2an2b2++Cnn1abn1+Cnnbn=i=0nCnianibi


极限运算法则(们)

lim⁡n→∞(xn+yn)=lim⁡n→∞xn+lim⁡n→∞ynlim⁡n→∞(xnyn)=lim⁡n→∞xn⋅lim⁡n→∞ynlim⁡n→∞(xnyn)=lim⁡n→∞xnlim⁡n→∞ynlim⁡n→∞xnyn=(lim⁡n→∞xn)lim⁡n→∞yn \begin{aligned} & \lim_{n\to \infty}(x_n+y_n) = \lim_{n\to \infty}x_n + \lim_{n\to \infty} y_n \\ \\ & \lim_{n\to \infty}(x_ny_n) = \lim_{n\to \infty}x_n \cdot \lim_{n\to \infty}y_n\\ \\ & \lim_{n\to \infty}\left( \frac{x_n}{y_n} \right) = \frac{\lim_{n\to \infty}x_n}{\lim_{n\to \infty}y_n} \\ \\ &\lim_{n\to \infty}x_n^{y_n} = \left(\lim_{n\to \infty}x_n\right)^{\lim_{n\to \infty}y_n} \end{aligned} nlim(xn+yn)=nlimxn+nlimynnlim(xnyn)=nlimxnnlimynnlim(ynxn)=limnynlimnxnnlimxnyn=(nlimxn)limnyn


Stolz 定理

两个数列 {xn}\lbrace x_n \rbrace{xn}{yn}\lbrace y_n \rbrace{yn},其中 yny_nyn 是无穷大量。如果:
lim⁡n→∞xn−xn−1yn−yn−1=a \lim_{n\to \infty}\frac{x_n - x_{n-1}}{y_n-y_{n-1}} = a nlimynyn1xnxn1=a
则:
lim⁡n→∞xnyn=a \lim_{n\to \infty} \frac{x_n}{y_n} = a nlimynxn=a


夹逼定理

三个数列 {xn}\lbrace x_n \rbrace{xn} , {yn}\lbrace y_n \rbrace{yn}{zn}\lbrace z_n \rbrace{zn}。若:
xn≤yn≤zn且lim⁡n→∞xn=lim⁡n→∞zn=a x_n \leq y_n \leq z_n \qquad 且 \qquad \lim_{n\to \infty}x_n = \lim_{n\to \infty}z_n = a xnynznnlimxn=nlimzn=a
则:
lim⁡n→∞yn=a \lim_{n\to \infty}y_n = a nlimyn=a


题(们)

(1)
lim⁡n→∞(1+12+13+⋯+1n)1n≤lim⁡n→∞n1n=1\lim_{n\to \infty}(1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n})^{\frac{1}{n}} \leq \lim_{n\to \infty}n^{\frac{1}{n}} = 1 nlim(1+21+31++n1)n1nlimnn1=1
lim⁡n→∞(1+12+13+⋯+1n)1n≥lim⁡n→∞11n=1 \lim_{n\to \infty}(1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n})^{\frac{1}{n}} \geq \lim_{n\to \infty}1^{\frac{1}{n}} = 1 nlim(1+21+31++n1)n1nlim1n1=1
∴lim⁡n→∞(1+12+13+⋯+1n)1n=1 \therefore \lim_{n\to \infty}(1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n})^{\frac{1}{n}} = 1 nlim(1+21+31++n1)n1=1


(2)
lim⁡n→∞(1n+1+1n+2+⋯+1n+n)≤lim⁡n→∞nn+n=lim⁡n→∞11+1n=1 \lim_{n\to \infty}(\frac{1}{n + \sqrt{1}} + \frac{1}{n + \sqrt{2}} + \cdots +\frac{1}{n + \sqrt{n}}) \leq \lim_{n\to \infty} \frac{n}{n + \sqrt{n}} = \lim_{n\to \infty}\frac{1}{1+\frac{1}{\sqrt{n}}} = 1 nlim(n+11+n+21++n+n1)nlimn+nn=nlim1+n11=1
lim⁡n→∞(nn+1+nn+2+⋯+nn+n)≥lim⁡n→∞nn+1=11+1n=1 \lim_{n\to \infty}({\frac{n}{n +\sqrt{1}} + \frac{n}{n +\sqrt{2}} +\cdots+ \frac{n}{n +\sqrt{n}}}) \geq \lim_{n\to \infty}\frac{n}{n+1} = \frac{1}{1+\frac{1}{n}} = 1 nlim(n+1n+n+2n++n+nn)nlimn+1n=1+n11=1
∴lim⁡n→∞(1n+1+1n+2+⋯+1n+n)=1 \therefore \lim_{n\to \infty}(\frac{1}{n+\sqrt{1}} + \frac{1}{n +\sqrt{2}} + \cdots + \frac{1}{n +\sqrt{n}}) = 1 nlim(n+11+n+21++n+n1)=1


(3)
lim⁡n→∞∑k=n2(n+1)21k≤lim⁡n→∞(n+1)2−n2+1n+1=lim⁡n→∞2=2 \lim_{n\to \infty}\sum_{k = n^2}^{(n+1)^2}\frac{1}{\sqrt{k}} \leq \lim_{n\to \infty}\frac{(n+1)^2-n^2+1}{n+1} = \lim_{n\to \infty}2 = 2 nlimk=n2(n+1)2k1nlimn+1(n+1)2n2+1=nlim2=2
lim⁡n→∞∑k=n2(n+1)21k≥(n+1)2−n2+1n=2lim⁡n→∞nn+1=2lim⁡n→∞11+1n=2 \lim_{n\to \infty}\sum_{k = n^2}^{(n+1)^2}\frac{1}{\sqrt{k}} \geq \frac{(n+1)^2-n^2+1}{n} = 2\lim_{n\to \infty}\frac{n}{n+1} = 2\lim_{n\to \infty}\frac{1}{1+\frac{1}{n}} = 2 nlimk=n2(n+1)2k1n(n+1)2n2+1=2nlimn+1n=2nlim1+n11=2


(4)
lim⁡n→∞1⋅3⋅5⋯(2n−1)2⋅4⋅6⋯(2n)≥lim⁡n→∞(12)n=0 \lim_{n\to \infty}\frac{1\cdot 3\cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots (2n)} \geq \lim_{n\to \infty}(\frac{1}{2})^n = 0 nlim246(2n)135(2n1)nlim(21)n=0
令G=∏i=1n2i−12i,P=∏i=1n2i2i+1 令 G = \prod_{i=1}^{n}\frac{2i-1}{2i},P = \prod_{i=1}^{n}\frac{2i}{2i+1} G=i=1n2i2i1P=i=1n2i+12i
G<P且GP=12n+1∴G<12n+1→lim⁡n→∞G≤lim⁡n→∞12n+1=0 G < P 且 GP = \frac{1}{2n+1} \therefore G < \frac{1}{\sqrt{2n+1}} \rightarrow \lim_{n\to \infty}G \leq \lim_{n\to \infty}\frac{1}{\sqrt{2n+1}} = 0 G<PGP=2n+11G<2n+11nlimGnlim2n+11=0
lim⁡n→∞1⋅3⋅5⋯(2n−1)2⋅4⋅6⋯(2n)=0 \lim_{n\to \infty}\frac{1\cdot 3\cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots (2n)} = 0 nlim246(2n)135(2n1)=0


(1)
lim⁡n→∞3n2+4n−1n2+1=3+lim⁡n→∞n−1n2+1=3+lim⁡n→∞1−1nn+1n=3 \lim_{n\to \infty}\frac{3n^2+4n-1}{n^2+1} = 3 + \lim_{n\to \infty}\frac{n-1}{n^2+1} = 3 + \lim_{n\to \infty}\frac{1-\frac{1}{n}}{n+\frac{1}{n}} = 3 nlimn2+13n2+4n1=3+nlimn2+1n1=3+nlimn+n11n1=3


(2)
lim⁡n→∞n3+2n2−3n+12n3−n+3=lim⁡n→∞1+2n+3n2+1n32−1n+1n3=12 \lim_{n\to \infty}\frac{n^3+2n^2-3n+1}{2n^3-n+3} = \lim_{n\to \infty}\frac{1 + \frac{2}{n} + \frac{3}{n^2} + \frac{1}{n^3}}{2 - \frac{1}{n} + \frac{1}{n^3}} = \frac{1}{2} nlim2n3n+3n3+2n23n+1=nlim2n1+n311+n2+n23+n31=21


(3)
lim⁡n→∞3n+n33n+1+(n+1)3=lim⁡n→∞1+n33n3+(n+1)33n=13(lim⁡n→∞nkan=0证明见8) \lim_{n\to \infty}\frac{3^n + n^3}{3^{n+1}+(n+1)^3} = \lim_{n\to \infty}\frac{1+\frac{n^3}{3^n}}{3 + \frac{(n+1)^3}{3^n}} = \frac{1}{3} (\lim_{n\to \infty}\frac{n^k}{a^n} = 0 证明见 8)nlim3n+1+(n+1)33n+n3=nlim3+3n(n+1)31+3nn3=31nlimannk=08


(4)
lim⁡n→∞(n2+1n−1)sin⁡nπ2=[(lim⁡n→∞n2+1n)−1]lim⁡n→∞sin⁡nπ2=0 \lim_{n\to \infty}(\sqrt[n]{n^2+1}-1)\sin\frac{n\pi}{2} = \Bigg[\Big(\lim_{n\to \infty}\sqrt[n]{n^2+1}\Big)-1\Bigg]\lim_{n\to \infty}\sin\frac{n\pi}{2} = 0 nlim(nn2+11)sin2nπ=[(nlimnn2+1)1]nlimsin2nπ=0


(5)
lim⁡n→∞n(n+1−n)=lim⁡n→∞(n2+n−n)(n2+n+n)n2+n+n=lim⁡n→∞nn2+n+n=lim⁡n→∞11+1+1n=12 \begin{aligned} &\lim_{n\to \infty}\sqrt{n}(\sqrt{n+1} - \sqrt{n}) = \lim_{n\to \infty}\frac{(\sqrt{n^2+n}-n)(\sqrt{n^2+n} + n)}{\sqrt{n^2+n}+n}\\ = &\lim_{n\to \infty}\frac{n}{\sqrt{n^2+n}+n} = \lim_{n\to \infty}\frac{1}{1 + \sqrt{1+\frac{1}{n}}} = \frac{1}{2} \end{aligned} =nlimn(n+1n)=nlimn2+n+n(n2+nn)(n2+n+n)nlimn2+n+nn=nlim1+1+n11=21


(6)
lim⁡n→∞(1−122)(1−132)⋯(1−1n2)=lim⁡n→∞22−122⋅32−132⋅42−142⋯n2−1n2=lim⁡n→∞(2+1)(2−1)(3+1)(3−1)(4+1)(4−1)⋯(n+1)(n−1)22⋅32⋅42⋯n2=lim⁡n→∞n+12n=lim⁡n→∞1+1n2=12 \begin{aligned} &\lim_{n\to \infty} (1-\frac{1}{2^2})(1-\frac{1}{3^2})\cdots (1-\frac{1}{n^2})\\ = & \lim_{n\to \infty}\frac{2^2-1}{2^2} \cdot \frac{3^2-1}{3^2} \cdot \frac{4^2-1}{4^2} \cdots \frac{n^2-1}{n^2}\\ = &\lim_{n\to \infty}\frac{(2+1)(2-1)(3+1)(3-1)(4+1)(4-1) \cdots (n+1)(n-1)}{2^2\cdot3^2\cdot4^2\cdots n^2} \\ = &\lim_{n\to \infty}\frac{n+1}{2n} = \lim_{n\to \infty}\frac{1+\frac{1}{n}}{2} = \frac{1}{2} \end{aligned} ===nlim(1221)(1321)(1n21)nlim222213232142421n2n21nlim223242n2(2+1)(21)(3+1)(31)(4+1)(41)(n+1)(n1)nlim2nn+1=nlim21+n1=21


(7)
lim⁡n→∞n(n2+14−n+1)=lim⁡n→∞nn2+14+n2+2n+14=lim⁡n→∞nn2+1−n2+2n+1n2+14+n2+2n+14=lim⁡n→∞n−2n(n2+14+n2+2n+14)(n2+1+n2+2n+1)=lim⁡n→∞−2n32(n2+14+n2+2n+14)(n2+1+n2+2n+1)=lim⁡n→∞−2n324n32=−12 \begin{aligned} & \lim_{n\to \infty}\sqrt{n}(\sqrt[4]{n^2+1}- \sqrt{n+1})\\ = & \lim_{n\to \infty}\sqrt{n}{\sqrt[4]{n^2+1} + \sqrt[4]{n^2+2n+1}}\\ = & \lim_{n\to \infty}\sqrt{n}\frac{\sqrt{n^2+1} - \sqrt{n^2+2n+1}}{\sqrt[4]{n^2+1}+\sqrt[4]{n^2+2n+1}}\\ = & \lim_{n\to \infty}\sqrt{n}\frac{-2n}{\left( \sqrt[4]{n^2+1}+\sqrt[4]{n^2+2n+1} \right) \left( \sqrt{n^2+1}+\sqrt{n^2+2n+1} \right) }\\ = & \lim_{n\to \infty} \frac{-2n^{\frac{3}{2}}}{\left( \sqrt[4]{n^2+1}+\sqrt[4]{n^2+2n+1} \right) \left( \sqrt{n^2+1}+\sqrt{n^2+2n+1} \right) }\\ = & \lim_{n\to \infty}\frac{-2n^{\frac{3}{2}}}{4n^{\frac32}} = -\frac 12 \end{aligned} =====nlimn(4n2+1n+1)nlimn4n2+1+4n2+2n+1nlimn4n2+1+4n2+2n+1n2+1n2+2n+1nlimn(4n2+1+4n2+2n+1)(n2+1+n2+2n+1)2nnlim(4n2+1+4n2+2n+1)(n2+1+n2+2n+1)2n23nlim4n232n23=21


(8)
lim⁡n→∞(12+322+⋯+2n−12n) \lim_{n\to \infty}(\frac{1}{2} + \frac{3}{2^2} + \cdots + \frac{2n-1}{2^n}) nlim(21+223++2n2n1)


  1. 证明:若 lim⁡n→∞an=a\lim_{n\to \infty} a_n = alimnan=alim⁡n→∞a1+a2+a3+⋯+ann=a\lim_{n\to \infty}\frac{a_1+a_2+a_3+\cdots + a_n}{n} = alimnna1+a2+a3++an=a
      令 xn=a1+⋯+an,yn=nx_n = a_1+\cdots+a_n,y_n = nxn=a1++anyn=n
    lim⁡n→∞11+⋯+ann=lim⁡n→∞xn+1−xnyn+1−yn=lim⁡n→∞an+11=a \begin{aligned} \lim_{n\to \infty}\frac{1_1+\cdots+a_n}{n} = \lim_{n\to \infty}\frac{x_{n+1}-x_n}{y_{n+1}-y_n} = \lim_{n\to \infty}\frac{a_{n+1}}{1} = a \end{aligned} nlimn11++an=nlimyn+1ynxn+1xn=nlim1an+1=a
      证毕

  1. an>0a_n > 0an>0, 且 lim⁡n→∞an=a\lim_{n\to \infty}a_n = alimnan=a,证明:lim⁡n→∞a1a2⋯ann=a\lim_{n\to \infty}\sqrt[n]{a_1a_2\cdots a_n} = alimnna1a2an=a
    lim⁡n→∞a1⋯ann≤lim⁡n→∞a1+⋯+ann=a \lim_{n\to \infty}\sqrt[n]{a_1\cdots a_n} \leq \lim_{n\to \infty}\frac{a_1 + \cdots + a_n}{n} = a nlimna1annlimna1++an=a
    lim⁡n→∞aa⋯ann≥lim⁡n→∞an=a \lim_{n\to \infty}\sqrt[n]{a_a\cdots a_n} \geq \lim_{n\to \infty}a_n = a nlimnaaannliman=a
    ∴lim⁡n→∞a1a2⋯ann=a \therefore \lim_{n\to \infty}\sqrt[n]{a_1a_2\cdots a_n} = a nlimna1a2an=a
      证毕

  1. an>0a_n > 0an>0 (n = 1, 2, 3…),且 lim⁡n→∞an+1an=a\lim_{n\to \infty}\frac{a_{n+1}}{a_n} = alimnanan+1=a,求证 lim⁡n→∞ann=a\lim_{n\to \infty}\sqrt[n]{a_n} = alimnnan=a

  1. lim⁡n→∞12+33+52+⋯+(2n+1)2n3\lim_{n\to \infty}\frac{1^2 + 3^3 + 5^2 + \cdots + (2n+1)^2}{n^3}limnn312+33+52++(2n+1)2

  1. 用 Stolz 定理求 lim⁡n→∞log⁡ann\lim_{n\to \infty}\frac{\log_an}{n}limnnloganlim⁡n→∞nkan\lim_{n\to \infty}\frac{n^k}{a^n}limnannk
    lim⁡n→∞log⁡ann=lim⁡n→∞log⁡a(n+1)−log⁡ann+1−n=lim⁡n→∞log⁡a(n+1n)=lim⁡n→∞log⁡a(1+1n)=0 \begin{aligned} \lim_{n\to \infty}\frac{\log_an}{n} = &\lim_{n\to \infty}\frac{\log_a(n+1)-\log_an}{n+1-n} \\ = & \lim_{n\to \infty}\log_a(\frac{n+1}{n})\\ = & \lim_{n\to \infty}\log_a(1+\frac{1}{n}) = 0 \end{aligned} nlimnlogan===nlimn+1nloga(n+1)logannlimloga(nn+1)nlimloga(1+n1)=0
    lim⁡n→∞nkan=lim⁡n→∞nk−(n−1)kan−an−1=lim⁡n→∞Ck1nk−1−Ck2nk−2+Ck3nk−3−⋯+1an−an−1 \begin{aligned} &\lim_{n\to \infty}\frac{n^k}{a^n} = \lim_{n\to \infty}\frac{n^k-(n-1)^k}{a^{n}-a^{n-1}}\\ = & \lim_{n\to \infty}\frac{C_k^1n^{k-1}-C_k^2n^{k-2}+C_k^3n^{k-3}-\cdots+1}{a^n-a^{n-1}} \end{aligned} =nlimannk=nlimanan1nk(n1)knlimanan1Ck1nk1Ck2nk2+Ck3nk3+1

  1. {xn}\lbrace x_n \rbrace{xn} 是无穷大量, ∣yn∣≥δ>0|y_n| \geq \delta > 0ynδ>0,证明 {xnyn}\lbrace x_ny_n \rbrace{xnyn} 是无穷大量。

导数

常见的导数(们)

(C)′=0(sin⁡x)′=cosx(cos⁡x)′=−sinx(ln⁡x)′=1x(log⁡ax)′=1xlna(ex)′=ex(ax)′=axlna(xn)′=nxn−1 \begin{aligned} &(C)' = 0\\ &(\sin x)' = cosx\\ &(\cos x)' = -sinx\\ &(\ln x)' = \frac 1x\\ &(\log_ax)' = \frac{1}{xlna}\\ &(e^x)' = e^x\\ &(a^x)' = a^xlna\\ &(x^n)' = nx^{n-1} \end{aligned} (C)=0(sinx)=cosx(cosx)=sinx(lnx)=x1(logax)=xlna1(ex)=ex(ax)=axlna(xn)=nxn1


求导法则(们)

d(f(x)+g(x))dx=df(x)dx+dg(x)dxd(f(x)g(x))dx=df(x)dxg(x)+dg(x)dxf(x)d(f(x)g(x))dx=df(x)dxg(x)−dg(x)dxf(x)g2(x)df(g(x))dx=df(g(x))dg(x)⋅dg(x)dx \begin{aligned} &\frac{d(f(x)+g(x))}{dx} = \frac{df(x)}{dx} + \frac{dg(x)}{dx}\\ \\ &\frac{d\left(f(x)g(x)\right)}{dx} = \frac{df(x)}{dx}g(x) + \frac{dg(x)}{dx}f(x)\\ \\ &\frac{d\left(\frac{f(x)}{g(x)}\right)}{dx} = \frac{\frac{df(x)}{dx}g(x) - \frac{dg(x)}{dx}f(x)}{g^2(x)} \\ \\ &\frac{df(g(x))}{dx} = \frac{df(g(x))}{dg(x)} \cdot \frac{dg(x)}{dx} \end{aligned} dxd(f(x)+g(x))=dxdf(x)+dxdg(x)dxd(f(x)g(x))=dxdf(x)g(x)+dxdg(x)f(x)dxd(g(x)f(x))=g2(x)dxdf(x)g(x)dxdg(x)f(x)dxdf(g(x))=dg(x)df(g(x))dxdg(x)
  需要注意的是,复合函数求导法则不适用于指数形式,比如:xxx^xxx 的导数应该这样求:
(xx)′=(eln⁡(xx))′=(exln⁡x)′=exln⁡x⋅(ln⁡x+1) \begin{aligned} (x^x)' = \left(e^{\ln(x^x)}\right)' = \left( e^{x\ln x} \right)' = e^{x\ln x} \cdot (\ln x + 1) \end{aligned} (xx)=(eln(xx))=(exlnx)=exlnx(lnx+1)


题(们)

  当 a 为何值时,直线 y=xy = xy=x 能与 y=log⁡axy = \log_axy=logax 相切,切点在哪里。
  因为相切所以切点切线斜率为 1,即:
(log⁡ax)′=1xln⁡a=1 \left( \log_ax \right)' = \frac{1}{x\ln a} = 1 (logax)=xlna1=1
  又因为切点在 y=xy = xy=x 上,所以横纵坐标相等,即:
x=log⁡ax x = \log_ax x=logax
  联立得:
{1x0ln⁡a=1x0=log⁡ax0∵1x0ln⁡a=1∴x0=1ln⁡a∵x0=log⁡ax0∴x0=ln⁡x0ln⁡a∴ln⁡x0=1→x0=e→ln⁡a=1e→a=e1e \begin{aligned} &\begin{cases} \frac{1}{x_0\ln a} = 1 \\ x_0 = \log_a x_0 \end{cases}\\ & \because \frac{1}{x_0\ln a} = 1 \quad \therefore x_0 = \frac{1}{\ln a}\\ & \because x_0 = \log_ax_0 \quad \therefore x_0 = \frac{\ln x_0}{\ln a}\\ &\therefore \ln x_0 = 1 \rightarrow x_0 = e \rightarrow \ln a = \frac{1}{e} \rightarrow a = e^{\frac{1}{e}} \end{aligned} {x0lna1=1x0=logax0x0lna1=1x0=lna1x0=logax0x0=lnalnx0lnx0=1x0=elna=e1a=ee1
  所以当 a=e1ea = e^{\frac{1}{e}}a=ee1 时, y=log⁡axy = \log_axy=logaxy=xy=xy=x 相切,切点为 (e,e)(e, e)(e,e)

  求 arcsin⁡x\arcsin xarcsinx 的导数:

  我们知道如果 y=arcsin⁡xy = \arcsin xy=arcsinxx=sin⁡yx = \sin yx=siny。等式两边同时求导,得到:
y′cos⁡y=1→y′=1cos⁡y=11−sin⁡2y y' \cos y = 1 \rightarrow y' = \frac{1}{\cos y} = \frac{1}{\sqrt{1 - \sin^2 y}} ycosy=1y=cosy1=1sin2y1

  又因为 y=arcsin⁡xy = \arcsin xy=arcsinx,所以:

y′=11−sin⁡2(arcsin⁡x)=11−x2 y' = \frac{1}{\sqrt{1 - \sin^2(\arcsin x)}} = \frac{1}{\sqrt{1-x^2}} y=1sin2(arcsinx)1=1x21

  求 arccos⁡x\arccos xarccosx的导数:

  因为 y=arccos⁡xy = \arccos xy=arccosx,我们就有 x=cos⁡yx = \cos yx=cosy。两边同时求导得到:
1=−y′sin⁡y→y′=−1sin⁡y=−11−cos⁡2y 1 = -y' \sin y \rightarrow y' = -\frac{1}{\sin y} = -\frac{1}{\sqrt{1-\cos^2 y}} 1=ysinyy=siny1=1cos2y1

  又因为 y=arccos⁡xy = \arccos xy=arccosx 所以:
y′=−11−cos⁡2(arccos⁡x)=−11−x2 y' = -\frac{1}{\sqrt{1-\cos^2(\arccos x)}} = -\frac{1}{\sqrt{1-x^2}} y=1cos2(arccosx)1=1x21

  求 arctan⁡x\arctan xarctanx 的导数:

  设 y=arctan⁡xy = \arctan xy=arctanxx=tan⁡yx = \tan yx=tany两边同时求导得到:
1=y′(tan⁡y)′=y′(sin⁡ycos⁡y)′=y′(cos⁡2y+sin⁡2ycos⁡2y)=y′cos⁡2y 1 = y' (\tan y)' = y' \left(\frac{\sin y}{\cos y}\right)' = y' \left( \frac{\cos^2 y + \sin^2 y}{\cos^2 y} \right) = \frac{y'}{\cos^2 y} 1=y(tany)=y(cosysiny)=y(cos2ycos2y+sin2y)=cos2yy

  所以:
y′=cos⁡2y=cos⁡2ysin⁡2y+cos⁡2y=11+tan⁡2y y' = \cos^2 y = \frac{\cos^2 y}{\sin^2 y + \cos^2 y} = \frac{1}{1 + \tan^2 y} y=cos2y=sin2y+cos2ycos2y=1+tan2y1

  又因为 y=arctan⁡xy = \arctan xy=arctanx 所以:
y′=11+tan⁡2(arctan⁡x)=11+x2 y' = \frac{1}{1 +\tan^2(\arctan x)} = \frac{1}{1 + x^2} y=1+tan2(arctanx)1=1+x21


评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值