【TVM教程】为 Mali GPU 自动调度神经网络

Apache TVM是一个深度的深度学习编译框架,适用于 CPU、GPU 和各种机器学习加速芯片。更多 TVM 中文文档可访问 →https://tvm.hyper.ai/

作者Zhao Wu

针对特定设备和工作负载的自动调优对于获得最佳性能至关重要,本文介绍如何使用 auto-scheduler 为 Mali GPU 调优整个神经网络。

为自动调优神经网络,将网络划分为小的子图并独立调优。每个子图被视为一个搜索任务,任务调度器对时间进行切片,并动态地为这些任务分配时间资源,并预测每个任务对端到端执行时间的影响,优先考虑最能减少执行时间的任务。

对于每个子图,使用 tvm/python/topi 中的计算声明来获取张量表达式形式的计算 DAG。然后使用 auto-scheduler 来构建这个 DAG 的搜索空间,并搜索合适的调度(底层优化)。

与基于 template 的 AutoTVM(依赖手动 template 来定义搜索空间) 不同,auto-scheduler 不需要任何调度 template。换言之,auto-scheduler 只使用 tvm/python/topi 中的计算声明,不使用现有的调度 template。

注意,本教程无法在 Windows 或最新版本的 macOS 上运行。若要运行,需要将本教程的主体包装在 if __name__ == "__main__": 块中。

import numpy as np

import tvm
from tvm import relay, auto_scheduler
import tvm.relay.testing
from tvm.contrib import graph_executor
import os

定义网络

首先,要用 Relay 前端 API 定义网络。可以从 tvm.relay.testing 加载一些预定义的网络。也可以从 MXNet、ONNX、PyTorch 和 TensorFlow 加载模型(参见 前端教程)。

对于卷积神经网络,尽管 auto-scheduler 可以在任何布局下正常运行,但通过 NHWC 布局实现的性能最佳。auto-scheduler 对 NHWC 布局进行了很多优化,因此推荐将模型转换为 NHWC 布局,从而得以使用 auto-scheduler。可用 ConvertLayout pass 在 TVM 中进行布局转换。

def get_network(name, batch_size, layout="NHWC", dtype="float32"):
 """获取网络的符号定义和随机权重"""

 # auto-scheduler 更适合 NHWC 布局
 if layout == "NHWC":
        image_shape = (224, 224, 3)
 elif layout == "NCHW":
        image_shape = (3, 224, 224)
 else:
 raise ValueError("Invalid layout: " + layout)

    input_shape = (batch_size,) + image_shape
    output_shape = (batch_size, 1000)

 if name.startswith("resnet-"):
        n_layer = int(name.split("-")[1])
        mod, params = relay.testing.resnet.get_workload(
            num_layers=n_layer,
            batch_size=batch_size,
            layout=layout,
            dtype=dtype,
            image_shape=image_shape,
 )
 elif name.startswith("resnet3d-"):
        n_layer = int(name.split("-")[1])
        mod, params = relay.testing.resnet.get_workload(
            num_layers=n_layer,
            batch_size=batch_size,
            layout=layout,
            dtype=dtype,
            image_shape=image_shape,
 )
 elif name == "mobilenet":
        mod, params = relay.testing.mobilenet.get_workload(
            batch_size=batch_size, layout=layout, dtype=dtype, image_shape=image_shape
 )
 elif name == "squeezenet_v1.1":
 assert layout == "NCHW", "squeezenet_v1.1 only supports NCHW layout"
        mod, params = relay.testing.squeezenet.get_workload(
            version="1.1",
            batch_size=batch_size,
            dtype=dtype,
            image_shape=image_shape,
 )
 elif name == "inception_v3":
        input_shape = (batch_size, 3, 299, 299) if layout == "NCHW" else (batch_size, 299, 299, 3)
        mod, params = relay.testing.inception_v3.get_workload(batch_size=batch_size, dtype=dtype)
 elif name == "mxnet":
 # MXNet 模型的示例
 from mxnet.gluon.model_zoo.vision import get_model

 assert layout == "NCHW"

        block = get_model("resnet50_v1", pretrained=True)
        mod, params = relay.frontend.from_mxnet(block, shape={"data": input_shape}, dtype=dtype)
        net = mod["main"]
        net = relay.Function(
            net.params, relay.nn.softmax(net.body), None, net.type_params, net.attrs
 )
        mod = tvm.IRModule.from_expr(net)

 return mod, params, input_shape, output_shape

# 定义神经网络和编译 target。
network = "mobilenet"
batch_size = 1
layout = "NHWC"
# 如果使用 ndk 工具进行交叉编译,则设置为 True
use_ndk = True
# 交叉编译器路径
os.environ["TVM_NDK_CC"] = "/usr/bin/aarch64-linux-gnu-g++"
target = tvm.target.Target("opencl -device=mali", host="llvm -mtriple=aarch64-linux-gnu")
dtype = "float32"
log_file = "%s-%s-B%d-%s.json" % (network, layout, batch_size, target.kind.name)

启动 RPC 跟踪器并将设备注册到跟踪器

参考本 教程 中的「启动 RPC 跟踪器」和「将设备注册到 RPC 跟踪器」章节来启动 RPC 跟踪器,并将设备注册到跟踪器。

# 将其替换为跟踪器中的设备密钥
device_key = "rk3399"

提取搜索任务

接下来,从网络中提取搜索任务及其权重。任务的权重是任务的子图在整个网络中出现的次数。通过使用权重,可以将网络的端到端延迟近似为 sum(latency[t] * weight[t]),其中 latency[t] 是任务的延迟,而 weight[t] 是任务的权重,任务调度器仅针对该目标进行优化。

# 从网络中提取任务
print("Extract tasks...")
mod, params, input_shape, output_shape = get_network(network, batch_size, layout, dtype=dtype)
tasks, task_weights = auto_scheduler.extract_tasks(mod["main"], params, target)

for idx, task in enumerate(tasks):
 print("========== Task %d  (workload key: %s) ==========" % (idx, task.workload_key))
 print(task.compute_dag)

输出结果:

Extract tasks...
/workspace/python/tvm/driver/build_module.py:268: UserWarning: target_host parameter is going to be deprecated. Please pass in tvm.target.Target(target, host=target_host) instead.
 "target_host parameter is going to be deprecated. "
========== Task 0 (workload key: ["1037be767e8e18197e87653d81c34558", [1, 7, 7, 1024], [1, 1, 1024, 1024], [1, 1, 1, 1024], [1, 7, 7, 1024]]) ==========
placeholder = PLACEHOLDER [1, 7, 7, 1024]
pad_temp(i0, i1, i2, i3) = placeholder[i0, i1, i2, i3]
placeholder = PLACEHOLDER [1, 1, 1024, 1024]
conv2d_nhwc(nn, yy, xx, ff) += (pad_temp[nn, (yy + ry), (xx + rx), rc]*placeholder[ry, rx, rc, ff])
placeholder = PLACEHOLDER [1, 1, 1, 1024]
T_add(ax0, ax1, ax2, ax3) = (conv2d_nhwc[ax0, ax1, ax2, ax3] + placeholder[ax0, 0, 0, ax3])
T_relu(ax0, ax1, ax2, ax3) = max(T_add[ax0, ax1, ax2, ax3], 0f)

========== Task 1 (workload key: ["1037be767e8e18197e87653d81c34558", [1, 14, 14, 256], [1, 1, 256, 512], [1, 1, 1, 512], [1, 14, 14, 512]]) ==========
placeholder = PLACEHOLDER [1, 14, 14, 256]
pad_temp(i0, i1, i2, i3) = placeholder[i0, i1, i2, i3]
placeholder = PLACEHOLDER [1, 1, 256, 512]
conv2d_nhwc(nn, yy, xx, ff) += (pad_temp[nn, (yy + ry), (xx + rx), rc]*placeholder[ry, rx, rc, ff])
placeholder = PLACEHOLDER [1, 1, 1, 512]
T_add(ax0, ax1, ax2, ax3) = (conv2d_nhwc[ax0, ax1, ax2, ax3] + placeholder[ax0, 0, 0, ax3])
T_relu(ax0, ax1, ax2, ax3) = max(T_add[ax0, ax1, ax2, ax3], 0f)

========== Task 2 (workload key: ["06fce76bd84cb904eee50b905ca9449a", [1, 28, 28, 256], [3, 3, 256, 1], [1, 1, 1, 256], [1, 28, 28, 256]]) ==========
placeholder = PLACEHOLDER [1, 28, 28, 256]
PaddedInput(i0, i1, i2, i3) = tir.if_then_else(((((i1 >= 1) && (i1 < 29)) && (i2 >= 1)) && (i2 < 29)), placeholder[i0, (i1 - 1), (i2 - 1), i3], 0f)
placeholder = PLACEHOLDER [3, 3, 256, 1]
DepthwiseConv2d(b, i, j, c) += (PaddedInput[b, (i + di), (j + dj), c]*placeholder[di, dj, c, 0])
placeholder = PLACEHOLDER [1, 1, 1, 256]
T_add(ax0, ax1, ax2, ax3) = (DepthwiseConv2d[ax0, ax1, ax2, ax3] + placeholder[ax0, 0, 0, ax3])
T_relu(ax0, ax1, ax2, ax3) = max(T_add[ax0, ax1, ax2, ax3], 0f)

========== Task 3 (workload key: ["1037be767e8e18197e87653d81c34558", [1, 28, 28, 128], [1, 1, 128, 256], [1, 1, 1, 256], [1, 28, 28, 256]]) ==========
placeholder = PLACEHOLDER [1, 28, 28, 128]
pad_temp(i0, i1, i2, i3) = placeholder[i0, i1, i2, i3]
placeholder = PLACEHOLDER [1, 1, 128, 256]
conv2d_nhwc(nn, yy, xx, ff) += (pad_temp[nn, (yy + ry), (xx + rx), rc]*placeholder[ry, rx, rc, ff])
placeholder = PLACEHOLDER [1, 1, 1, 256]
T_add(ax0, ax1, ax2, ax3) = (conv2d_nhwc[ax0, ax1, ax2, ax3] + placeholder[ax0, 0, 0, ax3])
T_relu(ax0, ax1, ax2, ax3) = max(T_add[ax0, ax1, ax2, ax3], 0f)

========== Task 4 (workload key: ["1037be767e8e18197e87653d81c34558", [1, 7, 7, 512], [1, 1, 512, 1024], [1, 1, 1, 1024], [1, 7, 7, 1024]]) ==========
placeholder = PLACEHOLDER [1, 7, 7, 512]
pad_temp(i0, i1, i2, i3) = placeholder[i0, i1, i2, i3]
placeholder = PLACEHOLDER [1, 1, 512, 1024]
conv2d_nhwc(nn, yy, xx, ff) += (pad_temp[nn, (yy + ry), (xx + rx), rc]*placeholder[ry, rx, rc, ff])
placeholder = PLACEHOLDER [1, 1, 1, 1024]
T_add(ax0, ax1, ax2, ax3) = (conv2d_nhwc[ax0, ax1, ax2, ax3] + placeholder[ax0, 0, 0, ax3])
T_relu(ax0, ax1, ax2, ax3) = max(T_add[ax0, ax1, ax2, ax3], 0f)

========== Task 5 (workload key: ["69115f188984ae34ede37c3b8ca40b43", [1, 7, 7, 1024], [1, 1, 1, 1024]]) ==========
placeholder = PLACEHOLDER [1, 7, 7, 1024]
tensor(ax0, ax1, ax2, ax3) += placeholder[ax0, ((ax1*7) + rv0), ((ax2*7) + rv1), ax3]
tensor(ax0, ax1, ax2, ax3) = (tensor[ax0, ax1, ax2, ax3]/(float32((select((bool)1, ((ax1 + 1)*7), (((ax1 + 1)*7) + 1)) - (ax1*7)))*float32((select((bool)1, ((ax2 + 1)*7), (((ax2 + 1)*7) + 1)) - (ax2*7)))))

========== Task 6 (workload key: ["d7b65649a4dd54becea0a52aabbc5af5", [1, 1000], [1, 1000]]) ==========
placeholder = PLACEHOLDER [1, 1000]
T_softmax_maxelem(i0) max= placeholder[i0, k]
T_softmax_exp(i0, i1) = tir.exp((placeholder[i0, i1] - T_softmax_maxelem[i0]))
T_softmax_expsum(i0) += T_softmax_exp[i0, k]
T_softmax_norm(i0, i1) = (T_softmax_exp[i0, i1]/T_softmax_expsum[i0])

========== Task 7 (workload key: ["1037be767e8e18197e87653d81c34558", [1, 56, 56, 128], [1, 1, 128, 128], [1, 1, 1, 128], [1, 56, 56, 128]]) ==========
placeholder = PLACEHOLDER [1, 56, 56, 128]
pad_temp(i0, i1, i2, i3) = placeholder[i0, i1, i2, i3]
placeholder = PLACEHOLDER [1, 1, 128, 128]
conv2d_nhwc(nn, yy, xx, ff) += (pad_temp[nn, (yy + ry), (xx + rx), rc]*placeholder[ry, rx, rc, ff])
placeholder = PLACEHOLDER [1, 1, 1, 128]
T_add(ax0, ax1, ax2, ax3) = (conv2d_nhwc[ax0, ax1, ax2, ax3] + placeholder[ax0, 0, 0, ax3])
T_relu(ax0, ax1, ax2, ax3) = max(T_add[ax0, ax1, ax2, ax3], 0f)

========== Task 8 (workload key: ["06fce76bd84cb904eee50b905ca9449a", [1, 7, 7, 1024], [3, 3, 1024, 1], [1, 1, 1, 1024], [1, 7, 7, 1024]]) ==========
placeholder = PLACEHOLDER [1, 7, 7, 1024]
PaddedInput(i0, i1, i2, i3) = tir.if_then_else(((((i1 >= 1) && (i1 < 8)) && (i2 >= 1)) && (i2 < 8)), placeholder[i0, (i1 - 1), (i2 - 1), i3], 0f)
placeholder = PLACEHOLDER [3, 3, 1024, 1]
DepthwiseConv2d(b, i, j, c) += (PaddedInput[b, (i + di), (j + dj), c]*placeholder[di, dj, c, 0])
placeholder = PLACEHOLDER [1, 1, 1, 1024]
T_add(ax0, ax1, ax2, ax3) = (DepthwiseConv2d[ax0, ax1, ax2, ax3] + placeholder[ax0, 0, 0, ax3])
T_relu(ax0, ax1, ax2, ax3) = max(T_add[ax0, ax1, ax2, ax3], 0f)

========== Task 9 (workload key: ["1037be767e8e18197e87653d81c34558", [1, 56, 56, 64], [1, 1, 64, 128], [1, 1, 1, 128], [1, 56, 56, 128]]) ==========
placeholder = PLACEHOLDER [1, 56, 56, 64]
pad_temp(i0, i1, i2, i3) = placeholder[i0, i1, i2, i3]
placeholder = PLACEHOLDER [1, 1, 64, 128]
conv2d_nhwc(nn, yy, xx, ff) += (pad_temp[nn, (yy + ry), (xx + rx), rc]*placeholder[ry, rx, rc, ff])
placeholder = PLACEHOLDER [1, 1, 1, 128]
T_add(ax0, ax1, ax2, ax3) = (conv2d_nhwc[ax0, ax1, ax2, ax3] + placeholder[ax0, 0, 0, ax3])
T_relu(ax0, ax1, ax2, ax3) = max(T_add[ax0, ax1, ax2, ax3], 0f)

========== Task 10 (workload key: ["c87ba68bc180312f5716af09a77ca15b", [1, 14, 14, 512], [3, 3, 512, 1], [1, 1, 1, 512], [1, 7, 7, 512]]) ==========
placeholder = PLACEHOLDER [1, 14, 14, 512]
PaddedInput(i0, i1, i2, i3) = tir.if_then_else(((((i1 >= 1) && (i1 < 15)) && (i2 >= 1)) && (i2 < 15)), placeholder[i0, (i1 - 1), (i2 - 1), i3], 0f)
placeholder = PLACEHOLDER [3, 3, 512, 1]
DepthwiseConv2d(b, i, j, c) += (PaddedInput[b, ((i*2) + di), ((j*2) + dj), c]*placeholder[di, dj, c, 0])
placeholder = PLACEHOLDER [1, 1, 1, 512]
T_add(ax0, ax1, ax2, ax3) = (DepthwiseConv2d[ax0, ax1, ax2, ax3] + placeholder[ax0, 0, 0, ax3])
T_relu(ax0, ax1, ax2, ax3) = max(T_add[ax0, ax1, ax2, ax3], 0f)

========== Task 11 (workload key: ["1037be767e8e18197e87653d81c34558", [1, 28, 28, 256], [1, 1, 256, 256], [1, 1, 1, 256], [1, 28, 28, 256]]) ==========
placeholder = PLACEHOLDER [1, 28, 28, 256]
pad_temp(i0, i1, i2, i3) = placeholder[i0, i1, i2, i3]
placeholder = PLACEHOLDER [1, 1, 256, 256]
conv2d_nhwc(nn, yy, xx, ff) += (pad_temp[nn, (yy + ry), (xx + rx), rc]*placeholder[ry, rx, rc, ff])
placeholder = PLACEHOLDER [1, 1, 1, 256]
T_add(ax0, ax1, ax2, ax3) = (conv2d_nhwc[ax0, ax1, ax2, ax3] + placeholder[ax0, 0, 0, ax3])
T_relu(ax0, ax1, ax2, ax3) = max(T_add[ax0, ax1, ax2, ax3], 0f)

========== Task 12 (workload key: ["06fce76bd84cb904eee50b905ca9449a", [1, 56, 56, 128], [3, 3, 128, 1], [1, 1, 1, 128], [1, 56, 56, 128]]) ==========
placeholder = PLACEHOLDER [1, 56, 56, 128]
PaddedInput(i0, i1, i2, i3) = tir.if_then_else(((((i1 >= 1) && (i1 < 57)) && (i2 >= 1)) && (i2 < 57)), placeholder[i0, (i1 - 1), (i2 - 1), i3], 0f)
placeholder = PLACEHOLDER [3, 3, 128, 1]
DepthwiseConv2d(b, i, j, c) += (PaddedInput[b, (i + di), (j + dj), c]*placeholder[di, dj, c, 0])
placeholder = PLACEHOLDER [1, 1, 1, 128]
T_add(ax0, ax1, ax2, ax3) = (DepthwiseConv2d[ax0, ax1, ax2, ax3] + placeholder[ax0, 0, 0, ax3])
T_relu(ax0, ax1, ax2, ax3) = max(T_add[ax0, ax1, ax2, ax3], 0f)

========== Task 13 (workload key: ["c87ba68bc180312f5716af09a77ca15b", [1, 112, 112, 64], [3, 3, 64, 1], [1, 1, 1, 64], [1, 56, 56, 64]]) ==========
placeholder = PLACEHOLDER [1, 112, 112, 64]
PaddedInput(i0, i1, i2, i3) = tir.if_then_else(((((i1 >= 1) && (i1 < 113)) && (i2 >= 1)) && (i2 < 113)), placeholder[i0, (i1 - 1), (i2 - 1), i3], 0f)
placeholder = PLACEHOLDER [3, 3, 64, 1]
DepthwiseConv2d(b, i, j, c) += (PaddedInput[b, ((i*2) + di), ((j*2) + dj), c]*placeholder[di, dj, c, 0])
placeholder = PLACEHOLDER [1, 1, 1, 64]
T_add(ax0, ax1, ax2, ax3) = (DepthwiseConv2d[ax0, ax1, ax2, ax3] + placeholder[ax0, 0, 0, ax3])
T_relu(ax0, ax1, ax2, ax3) = max(T_add[ax0, ax1, ax2, ax3], 0f)

========== Task 14 (workload key: ["06fce76bd84cb904eee50b905ca9449a", [1, 112, 112, 32], [3, 3, 32, 1], [1, 1, 1, 32], [1, 112, 112, 32]]) ==========
placeholder = PLACEHOLDER [1, 112, 112, 32]
PaddedInput(i0, i1, i2, i3) = tir.if_then_else(((((i1 >= 1) && (i1 < 113)) && (i2 >= 1)) && (i2 < 113)), placeholder[i0, (i1 - 1), (i2 - 1), i3], 0f)
placeholder = PLACEHOLDER [3, 3, 32, 1]
DepthwiseConv2d(b, i, j, c) += (PaddedInput[b, (i + di), (j + dj), c]*placeholder[di, dj, c, 0])
placeholder = PLACEHOLDER [1, 1, 1, 32]
T_add(ax0, ax1, ax2, ax3) = (DepthwiseConv2d[ax0, ax1, ax2, ax3] + placeholder[ax0, 0, 0, ax3])
T_relu(ax0, ax1, ax2, ax3) = max(T_add[ax0, ax1, ax2, ax3], 0f)

========== Task 15 (workload key: ["c87ba68bc180312f5716af09a77ca15b", [1, 56, 56, 128], [3, 3, 128, 1], [1, 1, 1, 128], [1, 28, 28, 128]]) ==========
placeholder = PLACEHOLDER [1, 56, 56, 128]
PaddedInput(i0, i1, i2, i3) = tir.if_then_else(((((i1 >= 1) && (i1 < 57)) && (i2 >= 1)) && (i2 < 57)), placeholder[i0, (i1 - 1), (i2 - 1), i3], 0f)
placeholder = PLACEHOLDER [3, 3, 128, 1]
DepthwiseConv2d(b, i, j, c) += (PaddedInput[b, ((i*2) + di), ((j*2) + dj), c]*placeholder[di, dj, c, 0])
placeholder = PLACEHOLDER [1, 1, 1, 128]
T_add(ax0, ax1, ax2, ax3) = (DepthwiseConv2d[ax0, ax1, ax2, ax3] + placeholder[ax0, 0, 0, ax3])
T_relu(ax0, ax1, ax2, ax3) = max(T_add[ax0, ax1, ax2, ax3], 0f)

========== Task 16 (workload key: ["2ca148ecea6508ce625f85719021344f", [1, 224, 224, 3], [3, 3, 3, 32], [1, 112, 1, 1], [1, 112, 1, 1], [1, 112, 112, 32]]) ==========
placeholder = PLACEHOLDER [1, 224, 224, 3]
pad_temp(i0, i1, i2, i3) = tir.if_then_else(((((i1 >= 1) && (i1 < 225)) && (i2 >= 1)) && (i2 < 225)), placeholder[i0, (i1 - 1), (i2 - 1), i3], 0f)
placeholder = PLACEHOLDER [3, 3, 3, 32]
conv2d_nhwc(nn, yy, xx, ff) += (pad_temp[nn, ((yy*2) + ry), ((xx*2) + rx), rc]*placeholder[ry, rx, rc, ff])
placeholder = PLACEHOLDER [1, 112, 1, 1]
T_multiply(ax0, ax1, ax2, ax3) = (conv2d_nhwc[ax0, ax1, ax2, ax3]*placeholder[ax0, ax1, 0, 0])
placeholder = PLACEHOLDER [1, 112, 1, 1]
T_add(ax0, ax1, ax2, ax3) = (T_multiply[ax0, ax1, ax2, ax3] + placeholder[ax0, ax1, 0, 0])
T_relu(ax0, ax1, ax2, ax3) = max(T_add[ax0, ax1, ax2, ax3], 0f)

========== Task 17 (workload key: ["1037be767e8e18197e87653d81c34558", [1, 14, 14, 512], [1, 1, 512, 512], [1, 1, 1, 512], [1, 14, 14, 512]]) ==========
placeholder = PLACEHOLDER [1, 14, 14, 512]
pad_temp(i0, i1, i2, i3) = placeholder[i0, i1, i2, i3]
placeholder = PLACEHOLDER [1, 1, 512, 512]
conv2d_nhwc(nn, yy, xx, ff) += (pad_temp[nn, (yy + ry), (xx + rx), rc]*placeholder[ry, rx, rc, ff])
placeholder = PLACEHOLDER [1, 1, 1, 512]
T_add(ax0, ax1, ax2, ax3) = (conv2d_nhwc[ax0, ax1, ax2, ax3] + placeholder[ax0, 0, 0, ax3])
T_relu(ax0, ax1, ax2, ax3) = max(T_add[ax0, ax1, ax2, ax3], 0f)

========== Task 18 (workload key: ["7d44c6e3c81cd80f61ff2265b2bae89a", [1, 1024], [1000, 1024], [1, 1000], [1, 1000]]) ==========
placeholder = PLACEHOLDER [1, 1024]
placeholder = PLACEHOLDER [1000, 1024]
T_matmul_NT(i, j) += (placeholder[i, k]*placeholder[j, k])
placeholder = PLACEHOLDER [1, 1000]
T_add(ax0, ax1) = (T_matmul_NT[ax0, ax1] + placeholder[ax0, ax1])

========== Task 19 (workload key: ["06fce76bd84cb904eee50b905ca9449a", [1, 14, 14, 512], [3, 3, 512, 1], [1, 1, 1, 512], [1, 14, 14, 512]]) ==========
placeholder = PLACEHOLDER [1, 14, 14, 512]
PaddedInput(i0, i1, i2, i3) = tir.if_then_else(((((i1 >= 1) && (i1 < 15)) && (i2 >= 1)) && (i2 < 15)), placeholder[i0, (i1 - 1), (i2 - 1), i3], 0f)
placeholder = PLACEHOLDER [3, 3, 512, 1]
DepthwiseConv2d(b, i, j, c) += (PaddedInput[b, (i + di), (j + dj), c]*placeholder[di, dj, c, 0])
placeholder = PLACEHOLDER [1, 1, 1, 512]
T_add(ax0, ax1, ax2, ax3) = (DepthwiseConv2d[ax0, ax1, ax2, ax3] + placeholder[ax0, 0, 0, ax3])
T_relu(ax0, ax1, ax2, ax3) = max(T_add[ax0, ax1, ax2, ax3], 0f)

========== Task 20 (workload key: ["c87ba68bc180312f5716af09a77ca15b", [1, 28, 28, 256], [3, 3, 256, 1], [1, 1, 1, 256], [1, 14, 14, 256]]) ==========
placeholder = PLACEHOLDER [1, 28, 28, 256]
PaddedInput(i0, i1, i2, i3) = tir.if_then_else(((((i1 >= 1) && (i1 < 29)) && (i2 >= 1)) && (i2 < 29)), placeholder[i0, (i1 - 1), (i2 - 1), i3], 0f)
placeholder = PLACEHOLDER [3, 3, 256, 1]
DepthwiseConv2d(b, i, j, c) += (PaddedInput[b, ((i*2) + di), ((j*2) + dj), c]*placeholder[di, dj, c, 0])
placeholder = PLACEHOLDER [1, 1, 1, 256]
T_add(ax0, ax1, ax2, ax3) = (DepthwiseConv2d[ax0, ax1, ax2, ax3] + placeholder[ax0, 0, 0, ax3])
T_relu(ax0, ax1, ax2, ax3) = max(T_add[ax0, ax1, ax2, ax3], 0f)

========== Task 21 (workload key: ["1037be767e8e18197e87653d81c34558", [1, 112, 112, 32], [1, 1, 32, 64], [1, 1, 1, 64], [1, 112, 112, 64]]) ==========
placeholder = PLACEHOLDER [1, 112, 112, 32]
pad_temp(i0, i1, i2, i3) = placeholder[i0, i1, i2, i3]
placeholder = PLACEHOLDER [1, 1, 32, 64]
conv2d_nhwc(nn, yy, xx, ff) += (pad_temp[nn, (yy + ry), (xx + rx), rc]*placeholder[ry, rx, rc, ff])
placeholder = PLACEHOLDER [1, 1, 1, 64]
T_add(ax0, ax1, ax2, ax3) = (conv2d_nhwc[ax0, ax1, ax2, ax3] + placeholder[ax0, 0, 0, ax3])
T_relu(ax0, ax1, ax2, ax3) = max(T_add[ax0, ax1, ax2, ax3], 0f)

备注
如何从远程设备获取硬件参数
from tvm.auto_scheduler.utils import request_remote
remote = request_remote(device_key, “127.0.0.1”, 9190)
dev = remote.cl()
max_shared_memory_per_block = dev.max_shared_memory_per_block
# 没有明确的本地内存限制
# 可以使用 INT32_MAX 来禁用对 local_memory 的检查。
max_local_memory_per_block = 2147483647  # INT32_MAX
max_threads_per_block = dev.max_threads_per_block
max_vthread_extent = int(dev.warp_size / 4) if int(dev.warp_size / 4) 1 else dev.warp_size
warp_size = dev.warp_size
hardware_params = auto_scheduler.HardwareParams(-1, 16, 64,
max_shared_memory_per_block, max_local_memory_per_block,
max_threads_per_block, max_vthread_extent, warp_size)

接下来可以将其传递给搜索任务,并进行调优。
tasks, task_weights = auto_scheduler.extract_tasks(
mod[“main”], params, target, hardware_params = hardware_params
)

调优及评估

接下来设置一些调优选项,启动搜索任务,并评估端到端性能

  • num_measure_trials 是调优期间可以使用的测试次数(根据自己的时间预算调整这个参数),若要进行快速演示,可将其设置为较小的数字(例如 200)。推荐将其设置为 800 * len(tasks) 左右,以便使搜索收敛。比如 resnet-50 有 29 个任务,所以可以设置为 20000。
  • 此外,使用 RecordToFile 将测试记录转储到日志文件中,测试记录可用于历史最佳查询、恢复搜索以及进行后续分析。
  • 更多参数参见 auto_scheduler.TuningOptionsauto_scheduler.LocalRunner
def tune_and_evaluate():
 print("Begin tuning...")
    tuner = auto_scheduler.TaskScheduler(tasks, task_weights)
    tune_option = auto_scheduler.TuningOptions(
        num_measure_trials=200, # 将此更改为 20000 以达到最佳性能
        builder=auto_scheduler.LocalBuilder(build_func="ndk" if use_ndk else "default"),
        runner=auto_scheduler.RPCRunner(
            device_key, host="127.0.0.1", port=9190, repeat=3, timeout=50
 ),
        measure_callbacks=[auto_scheduler.RecordToFile(log_file)],
 )
    tuner.tune(tune_option)

 # 编译整个网络
 print("Compile...")
 with auto_scheduler.ApplyHistoryBest(log_file):
 with tvm.transform.PassContext(
            opt_level=3, config={"relay.backend.use_auto_scheduler": True}
 ):
            lib = relay.build(mod, target, params=params)

 # 创建图执行器
 print("=============== Request Remote ===============")
 from tvm.auto_scheduler.utils import request_remote

    remote = request_remote(device_key, "127.0.0.1", 9190)
    dev = remote.cl()
 from tvm.contrib import utils, ndk

    temp = utils.tempdir()
    filename = "deploy_lib.so"
    path_lib = temp.relpath(filename)
    lib.export_library(path_lib, ndk.create_shared)
    remote.upload(path_lib)
    loaded_lib = remote.load_module(filename)
    module = graph_executor.GraphModule(loaded_lib["default"](dev))
    data = (np.random.uniform(size=input_shape)).astype(dtype)
    data_tvm = tvm.nd.array(data)
    module.set_input("data", data_tvm)

 # 评估
 print("Evaluate inference time cost...")
 print(module.benchmark(dev, repeat=3, min_repeat_ms=500))



# 不在网页服务器中运行调优,因为它需要的时间太长。
# 取消注释运行以下行。
# tune_and_evaluate()

备注
解释调优过程中打印的信息
在调优过程中,控制台上会打印很多用于调试的信息,最重要的信息是任务调度程序的输出,下表是输出示例。

------------------------------ [ Task Scheduler ]

| ID | Latency (ms) | Speed (GFLOPS) | Trials |

| 0 | 0.010 | 0.40 | 64 |
| 1 | 0.087 | 47.19 | 64 |
| 2 | 0.008 | -0.00 | 64 |
| 3 | 0.177 | 582.07 | 64 |
| 4 | 0.268 | 862.37 | 256 |
| 5 | 0.166 | 621.13 | 128 |
| 6 | 0.170 | 605.10 | 128 |
| 7 | 0.128 | 403.20 | 64 |
| 8 | 0.189 | 545.71 | 64 |
| 9 | 0.231 | 1001.01 | 448 |
| 10 | 0.155 | 664.80 | 256 |
| 11 | 0.155 | 662.86 | 256 |
| 12 | 0.119 | 434.08 | 64 |
| 13 | 0.199 | 522.13 | 64 |
| 14 | 0.235 | 986.56 | 320 |
| 15 | 0.149 | 689.13 | 128 |
| 16 | 0.155 | 664.80 | 192 |
| 17 | 0.151 | 340.64 | 64 |
| 18 | 0.176 | 597.55 | 128 |
| 19 | 0.220 | 1054.37 | 192 |
| 20 | 0.150 | 686.01 | 128 |
| 21 | 0.159 | 650.88 | 128 |
| 22 | 0.073 | 358.19 | 64 |
| 23 | 0.031 | 70.63 | 64 |
| 24 | 0.251 | 947.73 | 128 |
| 25 | 0.157 | 652.47 | 128 |
| 26 | 0.215 | 954.84 | 128 |
| 27 | 0.237 | 868.92 | 128 |
| 28 | 0.266 | 774.06 | 128 |

Estimated total latency: 10.016 ms Trials: 3992 Used time : 1131 s Next ID: 15

此表列出了所有任务的延迟和(预估)速度,还列出了所有任务的测试分配。最后一行打印了这些任务的总加权延迟,可以粗略估计网络的端到端执行时间。最后一行还打印了测试的总数、自动调优所花费的总时间以及下一个要调优的任务的 ID。
还有一些「tvm::Error」错误,因为 auto-scheduler 会尝试一些无效的调度。若调优继续运行,则可以忽略这些错误,因为这些错误与主进程隔离。

备注
提前终止调优
可以通过强制终止此进程来提前终止调优,只要在日志文件中为每个任务获得至少一个有效的调度,就能够进行编译(下面的部分)。

其他技巧

  1. 在调优过程中,auto-scheduler 需要编译许多程序,并从中提取特征。这部分会占用大量 CPU 资源,所以推荐使用多核的高性能 CPU,加快搜索速度。
  2. 可以使用 python3 -m tvm.auto_scheduler.measure_record --mode distill -i log.json 提取大日志文件,并仅保存最有用的记录。
  3. 可以从以前的日志文件恢复搜索,只需要在函数 run_tuning 中创建任务调度程序时添加一个新参数 load_log_file。比如,tuner = auto_scheduler.TaskScheduler(tasks, task_weights, load_log_file=log_file)
  4. 若有多个 target CPU,则可以将所有这些 CPU 用于并行化测试。查看这 部分 了解如何使用 RPC 跟踪器和 RPC 服务器。要在 auto-scheduler 中使用 RPC 跟踪器,请将 TuningOptions 中的 runner 替换为 auto_scheduler.RPCRunner

下载 Python 源代码:tune_network_mali.py

下载 Jupyter Notebook:tune_network_mali.ipynb

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值