原创 | 文 BFT机器人

在机器学习领域,随着计算能力和数据规模的不断增长,大模型成为一种引人注目的技术。这些具有大规模参数和参数量的机器学习模型正在改变着我们对于人工智能的认识,大模型的出现使得机器学习模型能够处理更复杂的任务,取得更准确和复杂的预测结果。
PART 01
大模型的概念与特征
大模型是指具有大规模参数和参数量的机器学习模型,它的起源可以追溯到深度学习的发展过程。深度学习是一种基于神经网络的机器学习方法,其核心思想是通过多个网络层次的学习来提取数据的高级特征,从而实现对复杂任务的建模和预测。
早期的神经网络模型往往只有几个网络层次,参数量相对较小。然而,随着计算能力的提升和数据规模的增加,研究人员开始尝试构建更复杂的模型,包括更多的网络层次和更多的参数。这些大模型可以通过学习更丰富、更复杂的特征来提高预测性能,从而在图像识别、自然语言处理等领域取得了重要的突破。

最低0.47元/天 解锁文章
1万+

被折叠的 条评论
为什么被折叠?



