解析:
写出f(2),f(3),f(4),f(5) ………可以发先 a b的系数是一系列的fib数列 如果可以求出fib数列 求快速幂就可以了 这样问题就在于如何求fib数列了
很容易想到用矩阵法。
另外 注意在矩阵相乘的时候会溢出 要用long long 如果对1000000007求余的话 依旧会溢出 (如果对它求余就错)
但是可以这样做 利用下面定理
当gcd(A,M)==1的时候
A^X = A^( X mod Eular(M) ) ( mod M ) .
这样我们只需对1000000006求余对于本题
f(n)是斐波那契数列的第n项
f(n) = a^f(n-1)*b^f(n)
然后由费马小定理
a^f(n-1) = a^(f(n-1)%1000000006) (mod 1000000007)
b^f(n) = b^(f(n)%1000000006) (mod 1000000007)
AC代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <cstdlib>
using namespace std;
typedef __int64 ll;
const int INF = 0x3f3f3f3f;
const int MOD = 1000000007;
const int SIZE = 2;
struct Matrix {
ll v[SIZE][SIZE];
Matrix() {
memset(v, 0, sizeof(v));
}
void init(ll _v) {
for(int i = 0; i < SIZE; i++)
v[i][i] = _v;
}
};
Matrix operator * (Matrix a, Matrix b) {
Matrix c;
for(int i = 0; i < SIZE; i++) {
for(int j = 0; j < SIZE; j++) {
c.v[i][j] = 0;
for(int k = 0; k < SIZE; k++) {
c.v[i][j] += (a.v[i][k] * b.v[k][j]) % (MOD-1);
c.v[i][j] %= (MOD-1);
}
}
}
return c;
}
Matrix operator ^ (Matrix a, ll k) {
Matrix c;
c.init(1);
while(k) {
if(k & 1)
c = a * c;
a = a * a;
k >>= 1;
}
return c;
}
ll quick_pow(ll a, ll k) {
ll s = 1;
while(k) {
if(k & 1)
s = s * a % MOD;
k >>= 1;
a = a * a % MOD;
}
return s;
}
int main() {
ll a, b, n;
while(scanf("%I64d %I64d %I64d", &a, &b, &n) != EOF) {
Matrix F, A, ret;
A.v[0][0] = 1, A.v[0][1] = 1;
A.v[1][0] = 1, A.v[1][1] = 0;
F.v[0][0] = 1, F.v[0][1] = 1;
F.v[1][0] = 0, F.v[1][1] = 0;
if(n == 0) {
printf("%I64d\n", a);
}else if(n == 1) {
printf("%I64d\n", b);
}else {
ret = F * (A^(n-2));
ll ans = quick_pow(a, ret.v[0][1]) * quick_pow(b, ret.v[0][0]) % MOD;
printf("%I64d\n", ans % MOD);
}
}
return 0;
}