UVA - 694 The Collatz Sequence(水题)

本文介绍了一个由Lothar Collatz提出的整数序列算法,并通过具体的输入输出样例展示了如何计算从任意正整数开始到终止条件出现为止的序列长度。
部署运行你感兴趣的模型镜像


  The Collatz Sequence 

An algorithm given by Lothar Collatz produces sequences of integers, and is described as follows:

Step 1:
Choose an arbitrary positive integer  A as the first item in the sequence.
Step 2:
If  A = 1 then stop.
Step 3:
If  A is even, then replace  A by  A / 2 and go to step 2.
Step 4:
If  A is odd, then replace  A by 3 *  A + 1 and go to step 2.

It has been shown that this algorithm will always stop (in step 2) for initial values of A as large as 109, but some values of A encountered in the sequence may exceed the size of an integer on many computers. In this problem we want to determine the length of the sequence that includes all values produced until either the algorithm stops (in step 2), or a value larger than some specified limit would be produced (in step 4).

Input 

The input for this problem consists of multiple test cases. For each case, the input contains a single line with two positive integers, the first giving the initial value of  A  (for step 1) and the second giving  L , the limiting value for terms in the sequence. Neither of these,  A  or  L , is larger than 2,147,483,647 (the largest value that can be stored in a 32-bit signed integer). The initial value of  A  is always less than  L . A line that contains two negative integers follows the last case.

Output 

For each input case display the case number (sequentially numbered starting with 1), a colon, the initial value for  A , the limiting value  L , and the number of terms computed.

Sample Input 

 3 100
 34 100
 75 250
 27 2147483647
 101 304
 101 303
 -1 -1

Sample Output 

 Case 1: A = 3, limit = 100, number of terms = 8
 Case 2: A = 34, limit = 100, number of terms = 14
 Case 3: A = 75, limit = 250, number of terms = 3
 Case 4: A = 27, limit = 2147483647, number of terms = 112
 Case 5: A = 101, limit = 304, number of terms = 26
 Case 6: A = 101, limit = 303, number of terms = 1
 
 
题目大意:
输入两个数A和L,按照以下进行循环运算,问最后结束循环时一共进行了多少次运算?

 
  1. 若A为1或者A>L,则推出。
  2. 若A为偶数,则A=A/2。
  3. 若A为奇数,则A=3*A+1。
注意:
  1. 最后的1也算一项。
  2. 如果某个A>limit,那么此项不计入。
  3. 3*A+1很可能会溢出,所以要用long long进行保存。


#include <stdio.h>

int main() {
	long long a,l,t;
	int cnt,cas = 1;
	while(scanf("%lld%lld",&a,&l) != EOF) {
		if(a == -1 && l == -1) {
			break;
		}
		cnt = 0;
		t = a;	
		while( a != 1 && a <= l) {
			if(a % 2 == 0) {
				a = a / 2;
			}else if(a % 2 == 1) {
				a = 3 * a + 1;
			}
			cnt++;
		}
		if(a == 1) {
			cnt++;
		}
		printf("Case %d: A = %lld, limit = %lld, number of terms = %d\n",cas++,t,l,cnt);
	}
	return 0;
}

您可能感兴趣的与本文相关的镜像

GPT-SoVITS

GPT-SoVITS

AI应用

GPT-SoVITS 是一个开源的文本到语音(TTS)和语音转换模型,它结合了 GPT 的生成能力和 SoVITS 的语音转换技术。该项目以其强大的声音克隆能力而闻名,仅需少量语音样本(如5秒)即可实现高质量的即时语音合成,也可通过更长的音频(如1分钟)进行微调以获得更逼真的效果

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值