一、简介
1.关于DMA
DMA(Direct Memory Access,直接存储器访问) 是所有现代电脑的重要特色,它允许不同速度的硬件装置来沟通,而不需要依赖于CPU的大量中断负载。否则,CPU需要从来源把每一片段的资料复制到暂存器,然后把它们再次写回到新的地方。在这个时间中,CPU对于其他的工作来说就无法使用。
简单的来说,能控制主存内部读写,这样有利于减轻CPU负担,加快读取速度。
在没有DMA之前,串口每次发送数据时都要由CPU将源地址上的数据拷贝到串口发送的相关寄存器上;串口每次接收数据时都要由CPU将发送来的数据拷贝到主存上。而加了DMA后,只需要告诉DMA源地址和目标地址,DMA通道就能够自动进行数据的转移,即CPU只需要告诉DMA:串口需要发送的数据在哪里,串口接收到的数据应该存在哪里,运输的工作则交由DMA去做,运输期间CPU就可以去处理别的事情,这就大大提高了CPU的运行效率。
2.DMA使用场景
DMA用在只需要传输数据,不需要处理数据的地方,有三种传输方式:
- 外设→存储器 (例如:将串口RDR寄存器写入某数据buf)
- 存储器→外设 (例如:将某数据buf写入串口TDR寄存器)
- 存储器→存储器(例如:复制某特别大的数据buf)
3.DMA控制结构
Stm32F4最多有:2个DMA控制器,各8个数据流,每个数据流有8个通道(或请求),每个通道有一个仲裁器,用于处理请求的优先级。
4.IDLE空闲中断
(1)STM32 IDLE 接收空闲中断—接受完一帧数据,触发中断
在使用串口接受字符串时,可以使用空闲中断(IDLEIE置1,即可使能空闲中断),这样在接收完一个字符串,进入空闲状态时,即将IDLE置1,便会激发一个空闲中断。在中断处理函数,我们可以解析这个字符串。
(2)STM32的IDLE的中断产生条件
在串口无数据接收的情况下,不会产生,当清除IDLE标志位后,必须有接收到第一个数据后,才开始触发,一但接收的数据断流,没有接收到数据,即产生IDLE中断
(3)STM32 RXNE接收数据中断—接受到一个字节的数据,触发中断
当串口接收到一个bit的数据时,(读取到一个停止位) 便会触发 RXNE接收数据中断
5.实现方法
利用串口IDLE空闲中断的方式接收一帧数据,方法如下:
- 选择一个串口,并配置成空闲中断IDLE模式且使能DMA接收,并同时设置接收缓冲区和初始化DMA。
- 初始化完成之后,当外部给单片机发送数据的时候,假设这次接受的数据长度是200个字节,那么在单片机接收到一个字节的时候并不会产生串口中断,而是DMA在后台把数据默默地搬运到你指定的缓冲区数组里面。
- 当整帧数据发送完毕之后串口才会产生一次中断,此时可以利用__HAL_DMA_GET_COUNTER(&hdma_usart1_rx)。
- 函数计算出当前DMA接收存储空间剩余字节:本次的数据接受长度=预先定义的接收总字节-接收存储空间剩余字节。
例如:本次串口接受200个字节,HAL_UART_Receive_DMA(&huart1,rx_buffer,200);//打开DMA接收。然后我发送了HelloWord
9个字节的数据长度,那么此时 GET_COUNTER函数读出来 接收存储空间剩余字节 就是191个字节,实际接受的字节(9) = 预先定义的接收总字节(200) - __HAL_DMA_GET_COUNTER()(191):9 = 200-191
二、RTT配置
(1)配置串口:主要是配置使用的串口号,以及打开RTT所需要的驱动函数。
/** After configuring corresponding UART or UART DMA, you can use it.
*
* STEP 1, define macro define related to the serial port opening based on the serial port number
* such as #define BSP_USING_UART1
*
* STEP 2, according to the corresponding pin of serial port, define the related serial port information macro
* such as #define BSP_UART1_TX_PIN "PA9"
* #define BSP_UART1_RX_PIN "PA10"
*
* STEP 3, if you want using SERIAL DMA, you must open it in the RT-Thread Settings.
* RT-Thread Setting -> Components -> Device Drivers -> Serial Device Drivers -> Enable Serial DMA Mode
*
* STEP 4, according to serial port number to define serial port tx/rx DMA function in the board.h file
* such as #define BSP_UART1_RX_USING_DMA
*
*/
#define BSP_USING_UART1
#define BSP_UART1_TX_PIN "PA9"
#define BSP_UART1_RX_PIN "PA10"
#define BSP_USING_UART3
#define BSP_UART3_TX_PIN "PD8"
#define BSP_UART3_RX_PIN "PD9"
(2)配置初始化函数:主要是使用CubeMx配置生成串口的初始化代码,并将代码复制到board.c
中。
extern DMA_HandleTypeDef hdma_usart3_rx;
extern DMA_HandleTypeDef hdma_usart3_tx;
/**
* @brief USART MSP Initialization
* This function configures the hardware resources used in this example
* @param husart: USART handle pointer
* @retval None
*/
void HAL_UART_MspInit(UART_HandleTypeDef* huart)
{
GPIO_InitTypeDef GPIO_InitStruct = {
0};
if (huart->Instance == USART3)
{
/* Peripheral clock enable */
__HAL_RCC_USART3_CLK_ENABLE();
__HAL_RCC_GPIOD_CLK_ENABLE();
/**USART3 GPIO Configuration
PD8 ------> USART3_TX
PD9 ------> USART3_RX
*/
GPIO_InitStruct.Pin = GPIO_PIN_8 | GPIO_PIN_9;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF7_USART3;
HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
/* USART3 DMA Init */