- 博客(66)
- 收藏
- 关注

原创 [深度学习论文笔记] Convolutional Neuron Networks and its Applications
In artificial intelligence, there exists a Moravec’s Paradox, 1 “High-level reasoning requires very little computation, but low-level sensorimotor skills require enormous computational resources”. It
2016-11-19 11:11:23
1373

原创 [机器学习基础] Notes on Machine Learning
This note was written when I was starting studying machine learning. The first part includes mathematical background such as linear algebra, probability, statistics, information theory, and numerical
2016-09-28 09:14:44
588

原创 [深度学习基础] 深度学习基础及数学原理
图像分类 (image classification) 问题是指, 假设给定一系列离散的类别(categories)(如猫, 狗, 飞机, 货车, ...), 对于给定的图像, 从这些类别中赋予一个作为它的标记 (label). 图像分类问题是计算机视觉领域的核心问题之一, 也与目标检测 (object detection), 目标分割 (object segmentation) 等其他计算机视觉
2016-09-26 20:30:31
7873
2
原创 [深度学习论文笔记][Video Classification] Delving Deeper into Convolutional Networks for Learning Video Repre
Ballas, Nicolas, et al. “Delving Deeper into Convolutional Networks for Learning Video Representations.” arXiv preprint arXiv:1511.06432 (2015). (Citaions: 14).1 MotivationPrevious works on Re
2016-11-17 16:01:17
2231
原创 [深度学习论文笔记][Video Classification] Beyond Short Snippets: Deep Networks for Video Classification
Yue-Hei Ng, Joe, et al. “Beyond short snippets: Deep networks for video classification.” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015. (Citations: 171).1 A
2016-11-17 14:57:26
3306
原创 [深度学习论文笔记][Video Classification] Long-term Recurrent Convolutional Networks for Visual Recognition a
Donahue, Jeffrey, et al. ”Long-term recurrent convolutional networks for visual recognition and description.” Proceedings of the IEEE Conference on Computer Vision and PatternRecognition. 2015. (Cit
2016-11-17 11:06:12
1823
原创 [深度学习论文笔记][Video Classification] Two-Stream Convolutional Networks for Action Recognition in Videos
Simonyan, Karen, and Andrew Zisserman. “Two-stream convolutional networks for action recognition in videos.” Advances in Neural Information Processing Systems. 2014.(Citations: 425).1 Motivati
2016-11-17 09:27:36
2045
原创 [深度学习论文笔记][Video Classification] Learning Spatiotemporal Features with 3D Convolutional Networks
Tran, Du, et al. “Learning spatiotemporal features with 3d convolutional networks.” 2015 IEEE International Conference on Computer Vision (ICCV). IEEE, 2015. (Citations: 101).1 ArchitectureThi
2016-11-16 11:04:09
1989
原创 [深度学习论文笔记][Video Classification] Large-scale Video Classification with Convolutional Neural Networks
Karpathy, Andrej, et al. “Large-scale video classification with convolutional neural networks.” Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. 2014. (Citations: 654).
2016-11-16 10:16:32
2613
原创 [深度学习论文笔记][Attention] Spatial Transformer Networks
Jaderberg, Max, Karen Simonyan, and Andrew Zisserman. “Spatial transformer networks.” Advances in Neural Information Processing Systems. 2015. (Citations: 116).1 MotivationThe Show, Attend and
2016-11-15 22:02:11
3124
原创 [深度学习论文笔记][Attention]Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention
Xu, Kelvin, et al. “Show, attend and tell: Neural image caption generation with visual attention.” arXiv preprint arXiv:1502.03044 2.3 (2015): 5. (Citations: 401).1 MotivationIn the previous i
2016-11-15 19:53:02
6170
原创 [深度学习论文笔记][Image to Sentence Generation] Deep Visual-Semantic Alignments for Generating Image Descri
Karpathy, Andrej, and Li Fei-Fei. “Deep visual-semantic alignments for generating image descriptions.” Proceedings of the IEEE Conference on Computer Vision and PatternRecognition. 2015. (Citations:
2016-11-14 21:29:18
1651
原创 [深度学习论文笔记][Recurrent Neural Networks] Visualizing and Understanding Recurrent Networks
Karpathy, Andrej, Justin Johnson, and Li Fei-Fei. “Visualizing and understanding recurrent networks” arXiv preprint arXiv:1506.02078 (2015). (Citations: 79).1 RNNRNN has formWhere W vari
2016-11-14 15:15:59
1335
原创 [深度学习论文笔记][Instance Segmentation] Instance-aware Semantic Segmentation via Multi-task Network Cascad
Dai, Jifeng, Kaiming He, and Jian Sun. “Instance-aware semantic segmentation via multitask network cascades.” arXiv preprint arXiv:1512.04412 (2015). (Citations: 40).1 MotivationAll previous w
2016-11-13 20:12:25
2178
原创 [深度学习论文笔记][Instance Segmentation] Hypercolumns for Object Segmentation and Fine-Grained Localization
Hariharan, Bharath, et al. “Hypercolumns for object segmentation and fine-grained localization.” Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-tion. 2015. (Citations: 185
2016-11-13 19:01:25
3336
原创 [深度学习论文笔记][Instance Segmentation] Simultaneous Detection and Segmentation
Hariharan, Bharath, et al. “Simultaneous detection and segmentation.” European Conference on Computer Vision. Springer International Publishing, 2014. (Citations: 234).1 PipelineSee Fig. The i
2016-11-13 16:41:08
2817
原创 [深度学习论文笔记][Semantic Segmentation] Learning Deconvolution Network for Semantic Segmentation
Noh, Hyeonwoo, Seunghoon Hong, and Bohyung Han. “Learning deconvolution network for semantic segmentation.” Proceedings of the IEEE International Conference on Com-puter Vision. 2015. (Citations: 13
2016-11-13 15:41:55
1114
原创 [深度学习论文笔记][Semantic Segmentation] Fully Convolutional Networks for Semantic Segmentation
Long, Jonathan, Evan Shelhamer, and Trevor Darrell. “Fully convolutional networks for semantic segmentation.” Proceedings of the IEEE Conference on Computer Vision andPattern Recognition. 2015. (Cit
2016-11-13 14:46:12
1148
原创 [深度学习论文笔记][Semantic Segmentation] Recurrent Convolutional Neural Networks for Scene Labeling
Pinheiro, Pedro HO, and Ronan Collobert. “Recurrent Convolutional Neural Networks for Scene Labeling.” ICML. 2014. (Citations: 163).1 PipelineSee Fig. Each instance takes as input both an resi
2016-11-12 19:43:13
1540
1
原创 [深度学习论文笔记][Semantic Segmentation] Learning Hierarchical Features for Scene Labeling
Farabet, Clement, et al. “Learning hierarchical features for scene labeling.” IEEE transactions on pattern analysis and machine intelligence 35.8 (2013): 1915-1929. (Citations:703).1 Pipeline
2016-11-12 18:33:09
753
原创 [深度学习论文笔记][Object Detection] You Only Look Once: Unified, Real-Time Object Detection
Redmon, Joseph, et al. “You only look once: Unified, real-time object detection.” arXiv preprint arXiv:1506.02640 (2015). (Citations: 76).1 MotivationWe frame object detection as a regression
2016-11-12 17:57:04
902
原创 [深度学习论文笔记][Object Detection] Faster R-CNN: Towards Real-Time Object
Ren, Shaoqing, et al. “Faster R-CNN: Towards real-time object detection with region proposal networks.” Advances in neural information processing systems. 2015. (Citations:444).1 MotivationR
2016-11-10 21:14:22
1051
原创 [深度学习论文笔记][Object Detection] Fast R-CNN
Girshick, Ross. “Fast r-cnn.” Proceedings of the IEEE International Conference on Computer Vision. 2015. (Citations: 444).1 R-CNN Problems• Slow at test-time: need to run full forward pass of
2016-11-10 15:16:14
686
原创 [深度学习论文笔记][Object Detection] Rich feature hierarchies for accurate object detection and semantic seg
Girshick, Ross, et al. “Rich feature hierarchies for accurate object detection and semantic segmentation.” Proceedings of the IEEE conference on computer vision and patternrecognition. 2014. (Citati
2016-11-09 18:36:32
645
原创 [深度学习论文笔记][Object Localization] OverFeat: Integrated Recognition, Localization and Detection using C
Sermanet, Pierre, et al. “Overfeat: Integrated recognition, localization and detection using convolutional networks.” arXiv preprint arXiv:1312.6229 (2013). (Citations: 978).1 MotivationObject
2016-11-08 19:56:46
1509
原创 [深度学习论文笔记][Human Pose Estimation] DeepPose: Human Pose Estimation via Deep Neural Networks
DeepPose: Human Pose Estimation via Deep Neural NetworksToshev, Alexander, and Christian Szegedy. “Deeppose: Human pose estimation via deep neural networks.” Proceedings of the IEEE Conference on Co
2016-11-08 15:29:36
1622
原创 [深度学习论文笔记][Adversarial Examples] Explaining and Harnessing Adversarial Examples
Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. “Explaining and harnessing adversarial examples.” arXiv preprint arXiv:1412.6572 (2014). (Citations: 129).10.3.1 Fast Gradient Sign Me
2016-11-07 09:27:11
3869
原创 [深度学习论文笔记][Adversarial Examples] Deep Neural Networks are Easily Fooled: High Confidence Predictions
Nguyen, Anh, Jason Yosinski, and Jeff Clune. “Deep neural networks are easily fooled: High confidence predictions for unrecognizable images.” 2015 IEEE Conference on Com-puter Vision and Pattern Rec
2016-11-03 18:16:30
1561
原创 [深度学习论文笔记][Adversarial Examples] Intriguing properties of neural networks
Szegedy, Christian, et al. “Intriguing properties of neural networks.” arXiv preprint arXiv:1312.6199 (2013). (Citations: 251).1 Representation of High Level Neurons1.1 MotivationPreviou
2016-11-03 11:04:13
2509
原创 [深度学习论文笔记][Neural Arts] A Neural Algorithm of Artistic Style
Gatys, Leon A., Alexander S. Ecker, and Matthias Bethge. “A neural algorithm of artistic style.” arXiv preprint arXiv:1508.06576 (2015). (Citations: 99).1 MotivationGiven a content image and a
2016-11-01 09:24:14
1002
原创 [深度学习论文笔记][Neural Arts] Inceptionism: Going Deeper into Neural Networks
Mordvintsev, Alexander, Christopher Olah, and Mike Tyka. “Inceptionism: Going deeper into neural networks.” Google Research Blog. Retrieved June 20 (2015). (Citations: 36).1 MotivationEach lay
2016-10-31 11:02:19
1233
原创 [深度学习论文笔记][Image Reconstruction] Understanding Deep Image Representations by Inverting Them
Mahendran, Aravindh, and Andrea Vedaldi. “Understanding deep image representations by inverting them.” 2015 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, 2015. (Citations:
2016-10-31 10:07:51
3226
原创 [深度学习论文笔记][Visualizing] Understanding Neural Networks Through Deep Visualization
Yosinski, Jason, et al. “Understanding neural networks through deep visualization.” arXiv preprint arXiv:1506.06579 (2015). (Citations: 65).1 Optimization For Any Arbitary Neuron2 Thre
2016-10-31 08:27:33
1278
原创 [深度学习论文笔记][Visualizing] 网络可视化部分论文导读
There are several ways to understanding and visualing CNN1 Visualizing ActivationsShow the activations of the network during the forward pass. It turns out that the activations usually start o
2016-10-29 10:19:07
1080
原创 [深度学习论文笔记][Visualizing] Striving for Simplicity: The All Convolutional Net
Springenberg, Jost Tobias, et al. “Striving for simlicity: The all convolutional net.” arXiv preprint arXiv:1412.6806 (2014). (Citations: 121).1 Deconv Approach (Guided Backpropagation)It comb
2016-10-29 10:16:48
1767
原创 [深度学习论文笔记][Visualizing] Deep Inside Convolutional Networks Visualising Image Classification
Simonyan, Karen, Andrea Vedaldi, and Andrew Zisserman. “Deep inside convolutional networks: Visualising image classification models and saliency maps.” arXiv preprint arXiv:1312.6034 (2013). (Citation
2016-10-27 15:12:32
3715
原创 [深度学习论文笔记][Image Classification] Human Performance
Russakovsky, Olga, et al. “Imagenet large scale visual recognition challenge.” International Journal of Computer Vision 115.3 (2015): 211-252. (Citations: 1352).1 Error Both CNN and Human are Su
2016-10-27 15:07:22
557
原创 [深度学习论文笔记][Visualizing] Visualizing and Understanding Convolutional Networks
Zeiler, Matthew D., and Rob Fergus. “Visualizing and understanding convolutional networks.” European Conference on Computer Vision. Springer International Publishing, 2014.(Citations: 1207).Occl
2016-10-24 16:54:10
983
原创 [深度学习论文笔记][Depth Estimation] Predicting Depth, Surface Normals and Semantic Labels with a Common M
Eigen, David, and Rob Fergus. “Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture.” Proceedings of the IEEE International Conference on Computer
2016-10-18 17:32:35
2352
原创 [深度学习论文笔记][Depth Estimation] Depth Map Prediction from a Single Image using a Multi-Scale Deep Netw
Eigen, David, Christian Puhrsch, and Rob Fergus. “Depth map prediction from a single image using a multi-scale deep network.” Advances in neural information processing systems. 2014. (Citations: 161).
2016-10-18 08:18:24
1674
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人