[深度学习论文笔记][Adversarial Examples] Intriguing properties of neural networks

研究发现,深度网络高层神经元的随机线性组合在语义上与原激活难以区分,挑战了网络能分解变化因素的观点。通过在图像上添加微小扰动,可以制造使网络错误分类的对抗样本。实验表明,对抗样本在不同模型和训练集上具有泛化性,揭示了它们的普遍性和非过拟合性质。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Szegedy, Christian, et al. “Intriguing properties of neural networks.” arXiv preprint arXiv:1312.6199 (2013). (Citations: 251).


1 Representation of High Level Neurons

1.1 Motivation


Previous works analyzed the semantic meaning of various neurons by finding the set of inputs that maximally activate a given unit. The inspection of individual units makes the

implicit assumption that the neurons in high level layers form a distinguished basis which is particularly useful for extracting semantic information.


1.2 Observation

We found that random linear combinations of activations are semantically indistinguishable from the activations themselves. This puts into question the notion that neural networks disentangle variation factors across activations. It suggests that it is the space, rather than the individual neurons, that contains the semantic information in the high

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值