[深度学习论文笔记][Neural Arts] Inceptionism: Going Deeper into Neural Networks

本文探讨了深度学习中Inceptionism的概念,通过观察网络任意层的激活状态,利用反向传播生成详细图像。较低层常生成线条或简单图案,而高层则能识别更复杂的图像特征和完整对象。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Mordvintsev, Alexander, Christopher Olah, and Mike Tyka. “Inceptionism: Going deeper into neural networks.” Google Research Blog. Retrieved June 20 (2015). (Citations: 36).


1 Motivation

Each layer of the network deals with features at a different level of abstraction. We feed the network an arbitrary image and let the network to enhance whatever it detected.


2 Method

Goal


Dream on arbitary layer’s activation A. The gradient wrt A is



3 Results

See Fig. If a cloud looks a little bit like a dog, the network will make it look more like a dog. This in turn will make the network recognize the dog even more strongly on the next

pass and so forth, until a highly detailed dog appears, seemingly out of nowhere.


Lower layers tend to produce strokes or simple ornamentlike patterns, because those layers are sensitive to basic features such as edges and their orientations. Higherlevel layers will identify more sophisticated features in images, complex features or even whole objects tend to emerge.


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值