Mahendran, Aravindh, and Andrea Vedaldi. “Understanding deep image representations by inverting them.” 2015 IEEE conference on computer vision and pattern recognition
Given an intermediate layer’s representation of an image, to which extent is it possible to reconstruct the image itself?
(CVPR). IEEE, 2015. (Citations: 142).
Given an intermediate layer’s representation of an image, to which extent is it possible to reconstruct the image itself?
Note that the representations collapse irrelevant differences in images (e.g. illumination or viewpoint), so that the representation should not be uniquely invertible.
2 Idea
Starting from random noise, find an image whose representations best matches the given one.
Where A is the given representation, Â is the one of the image X. (X) is the regul

本文探讨了深度学习中图像表示的理解,通过逆向重构来揭示CNN如何编码图像。研究发现,表示会忽略如光照或视角等不相关差异。实验使用了p-norm和总变差(TV)作为正则化器,平衡不同损失项以得到重构图像。结果表明,卷积层保持了图像的真实感,全连接层则重构为类似但不完全相同的图像组成部分,丢失位置信息但保留了某些区分特征。
最低0.47元/天 解锁文章
1115

被折叠的 条评论
为什么被折叠?



