《Robotics, Vision and Control — Fundamental Algorithms in MATLAB》第二章课后习题

本博客详述了《Robotitics,Vision and Control — Fundamental Algorithms in MATLAB》第二章的课后习题,涉及RPY角度转换、trplot选项探索、旋转与平移动画、翻滚立方体的动画制作以及向量四元数类的设计。通过解答,讨论了Euler角度与旋转矩阵的非唯一映射,并展示了MATLAB中实现的各种变换效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

本博客主要是对《Robiotics,Vision and Control — Fundamental Algorithms in MATLAB》第二章的课后习题进行总结,与大家一起学习交流。

1.Explore the effect of negative roll, pitch or yaw angles. Does transforming from RPY angles to rotation matrix then back to RPY angles give a different result to the starting value as it does for Euler angles?

fprintf('\n Question 1:\n');
f_origin=eye(3,3);
rpy=[-0.1,-0.2,0.3]
rpy2R = rpy2r(-0.1,-0.2, 0.3) % rpy-> R, 'XYZ'
R2rpy = tr2rpy(rpy2R)        %R -> rpy
trplot(f_origin,'color', 'r','frame','O');hold on;
trplot(rpy2R, 'color', 'g','frame','1');

这里写图片描述
Answer:
As for Euler angles, we kown that mapping from rotation matrix to Euler angle is not unique. But there will not have multiple solutions from rotation matrix to roll-pitch-yaw angle, thanks to roll-pitch-yaw sequence allows all angles to have arbitrary sign. Unfortunately, roll-pitch-yaw has a singularity when θp=±π2\theta_{p}= \pm \frac{\pi}{2}θp=±2π

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值