《Robotics, Vision and Control — Fundamental Algorithms in MATLAB》第三章课后习题

本博客主要探讨《Robotics, Vision and Control》一书第三章的课后习题,包括:1)研究lspb轨迹中恒定速度段的设定对效果的影响;2)对比tpoly和lspb轨迹在最大速度限制下的时间步数需求;3)使用tranimate比较四元数、欧拉角和航向-俯仰-偏航角的旋转插值;4)分析通过奇异点时不同旋转插值方法的行为;5)建立定量评估不同方向插值方法性能的方法;6)重新运行mstraj例子,调整初始和最终速度以及加速时间,研究总时间与加速时间的关系。" 90717949,5054199,Vue.js 实战项目大全,"['前端开发', 'Vue', 'Vue全家桶', 'webapp开发', '单页应用']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

本博客主要是对《Robotics, Vision and Control》第三章课后习题答案进行总结,与大家交流学习。

2.For a lspb trajectory from 0 to 1 in 50 steps explore the effects of specifying the velocity for the constant velocity segment. What are the minimum and maximum bounds possible?

%Code:
[s1,sd1,sdd1]=lspb(0,1,50,0.025);
[s2,sd2,sdd2]=lspb(0,1,50,0.03);
[s3,sd3,sdd3]=lspb(0,1,50,0.035);
[s4,sd4,sdd4]=lspb(0,1,50,0.04);
plot(sd1,'r'),hold on,plot(sd2,'g'),plot(sd3,'b'),plot(sd4,'y'),grid on;

这里写图片描述

Answer:
1. [s,sd,sdd] = lspb(q0, q1, t, V), where q0=0, q1=1,t=50, tf=max(0:t-1) and abs(q1-q0)/tf <= abs(V) <= 2*abs(q1-q0)/tf
   in this question, tf=49, so we have 0.020408 <= abs(V) <= 0.040816.

2. The constant velocity segment is descrease along with the increasing of the specific velocity. 
   The minimum and maximum value of the specific velocity are 0.020408 and 0.040816 respectively.

3.For a trajectory from 0 to 1 and given a maximum possible velocity of 0.025 compare how many time steps are required for each of the tpoly and lspb trajectories?

fprintf('\nFor lspb() function, 41<= time_steps <=81; for tpoly() function, time_steps=76\n')
Answer:
For lspb function, from question2, we know that abs(q1-q0)/tf <= abs(V) <= 2*abs(q1-q0)/tf. 
In this function, abs(V)=0.025, so we get 40 <= tf<= 80, and 41<= time_steps <= 81.

For tpoly function, the solution is as following:
1.   |q0 |  |0,          0,        0,      0,     0,   1| |A|
     |qf |  |tf^5,     tf^4,     tf^3,   tf^2,    tf,  1| |B|
     |qd0|= |0,          0,        0,      0,     1,   0|*|C|
     |qdf|  |5*tf^4,   4*tf^3,   3*tf^2, 2*tf,    1,   0| |D|
     | 0 |  |0,          0,        0,      2,     0,   0| |E| 
     | 0 |  |20*tf^3,  12*tf^2,  6*tf,     2,     0,   0| |F|,  where qf=1, q0=qd0=qdf=0

2.   |A|   |-6/tf^5,   6/tf^5, -3/tf^4, -3/tf^4, -1/(2*tf^3), 1/(2*tf^3) | |0| | 6/tf^5 |
     |B|   |15/tf^4, -15/tf^4,  8/tf^3,  7/tf^3,  3/(2*tf
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值