【强化学习】QAC、A2C、A3C学习笔记

本文探讨了强化学习中的QAC、A2C和A3C算法,对比了它们在策略优化、价值评估、同步/异步更新上的特点,以及各自在样本效率和计算资源需求上的差异。A2C通过advantage函数提高学习效率,A3C通过并行探索加速学习过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

强化学习算法:QAC vs A2C vs A3C

引言

经典的REINFORCE算法为我们提供了一种直接优化策略的方式,它通过梯度上升方法来寻找最优策略。然而,REINFORCE算法也有其局限性,采样效率低高方差收敛性差难以处理高维离散空间

为了克服这些限制,研究者们引入了Actor-Critic框架,它结合了价值函数和策略梯度方法的优点(适配连续动作空间和随机策略),旨在提升学习效率和稳定性。

QAC(Quality Actor-Critic)

实现原理

QAC算法通过结合Actor-Critic架构的优势,实现了策略和价值函数的有效融合。在此框架中,Actor基于策略梯度法选择动作,而Critic组件评估这些动作的价值,以指导Actor的策略更新。

在这里插入图片描述
由图可知,在Actor-Critic算法中,TD Error用于更新Critic的价值函数,也用来指导Actor的策略梯度更新。简单来说,如果TD Error较大,意味着当前策略对于该状态-动作对的价值预测不准确,需要更大的调整。

优势与局限

QAC的主要优势在于其将策略探索与价值评估相结合,旨在提升决策质量与学习速度。然而,由于依赖样本来更新策略,它可能会面临高方差问题,尤其是在样本数量较少或者环境噪声较大的情况下。 这要求在实际应用中进行适当的调整和优化,以实现最佳性能。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

如果皮卡会coding

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值