
持续分享:机器学习、深度学习、python相关内容、日常BUG解决方法及Windows&Linux实践小技巧。
如发现文章有误,麻烦请指出,我会及时去纠正。有其他需要可以私信我或者发我邮箱:zhilong666@foxmail.com
强化学习(Reinforcement Learning)是一种机器学习的方法,通过让智能体在与环境的交互中学习来制定策略,以最大化预期的累积奖励。SAC(Soft Actor-Critic)算法是一种强化学习算法,它结合了策略优化和价值函数学习,实现对连续动作空间的鲁棒性采样优化。
本文将详细讲解强化学习常用算法之一“SAC”

目录
一、简介
强化学习(Reinforcement Learning,RL)是一种机器学习的分支,其目标是让智能体(agent)通过与环境的交互学习到最优的行为策略。SAC(Soft Actor-Critic)算法是近年来在强化学习领域取得重要突破的算法之一,它是一种基于策略优化和价值函数学习的算法。相对于传统的强化学习算法,SAC算法在优化过程中引入了熵正则化和软化策略更新的概念,使得智能体能够更好地探索未知的状态,提高学习效率。
二、发展史
SAC算法的发展离不开前人的工作。在介绍SAC算法之前,我们先了解一些相关的算法。
1. DQN(Deep Q-Networks) DQN是由DeepMind提出的一种强化学习算法,它首次将深度神经网络与Q-Learning相结合。
通过使用经验回放和目标网络来提升学习的稳定性,DQN算法在很多基准测试中都取得了优异的结果。
2. DDPG(Deep Deterministic Policy Gradient) DDPG是一种用于连续动作空间的深度强化学习算法,它结合了深度神经网络和确定性策略梯度。
DDPG算法在连续控制问题上取得了很好的表现,并被广泛用于实际应用中。
3. SAC算法的前身 SAC算法的前身包括TD3(Twin Delayed DDPG)和DDPG算法。
TD3算法在DDPG算法的基础上引入了双网络和延迟更新,进一步提升了算法的性能。SAC算法在TD3算法的基础上进一步拓展,引入了熵优化和自适应温度参数等技术,以适应更复杂的任务。
SAC算法最早由Haarnoja等人于2018年提出,并发表在期刊《Journal of Machine Learning Research》中。该算法结合了Actor-Critic方法和强化学习中的熵概念,为强化学习中的连续控制任务提供了一种更高效、更稳定的解决方案。
三、算法公式
SAC算法主要由以下几个核心公式组成:
-
策略更新公式:

其中,∇θpolicyJ(θpolicy)表示策略的梯度,π(a∣s)表示策略在状态s下采取动作a的概率,Qπ(s,a)表示状态动作对(s,a)的值函数,α表示熵调节系数,V~(s)表示柔化的值函数。
-
Q值函数更新公式:

其中,Q(s,a)表示状态动作对(s,a)的值函数,r(s,a)表示在状态s采取动作a时获得的即时奖励,γ表示折扣因子,V(s′)表示状态s's′的值函数,p(s′∣s,a)表示在状态s采取动作a后转移到状态s′的转移概率。
-
值函数更新公式:

其中,V(s)表示状态ss的值函数,a ∼π表示从策略π中采样得到动作a。
四、算法原理
SAC算法采用了一系列技术来实现在连续动作空间的鲁棒性采样优化。下面介绍SAC算法的主要原理:
1. 策略优化
SAC算法使用策略梯度方法来进行优化。通过最大化软Q值的目标函数,SAC算法能够有效地在连续动作空间进行采样,以提高采样效率和优化性能。
2. 价值函数学习
SAC算法引入了值函数的学习,通过学习值函数,可以更准确地估计状态-动作对的价值。值函数的学习可以通过最小化Bellman误差来实现,进一步提高算法的性能。

本文详细介绍了SAC(SoftActor-Critic)算法,一种强化学习方法,用于连续动作空间的策略优化。SAC结合策略优化和价值函数学习,通过熵优化和自适应温度参数提高智能体的探索效率和稳定性。文中还给出了SAC算法的公式、原理、功能,并提供了Python代码示例,展示如何训练和测试SAC算法在倒立摆环境中的应用。
https://blog.youkuaiyun.com/Code_and516?type=blog
最低0.47元/天 解锁文章
1822

被折叠的 条评论
为什么被折叠?



