原理讲解,因为下面这篇文章都讲解清楚了,主要就是一个公式,通过计算颜色差异的权重与高斯滤波的权重乘积即可。
OpenCV双边滤波详解及实代码实现_青城山小和尚-优快云博客_opencv 双边滤波gg
opencv学习(二十二)之双边滤波bilateralFilter_烟雨博客-优快云博客_bilateralfilter
核心就是颜色差异较大即边界部分时r会很小,趋向于0,因此整个w权重趋向于0,只有自己这个点权重为1,因此相当于这个点的颜色不变,就保留了边界;当颜色差异不大时r约等于1,因此整个w就约等于d即高斯滤波,即平坦区域是高斯滤波系数。
再结合下面的图应该就能理解了
直接给我我的实现代码,没有做优化,三维也是分离为三个通道单独处理的,重在逻辑清楚,代码能看懂
#include <iostream>
#include <opencv2/core.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
using namespace std;
using namespace cv;
//定义全局变量
const int g_ndMaxValue = 100;
const int g_nsigmaColorMaxValue = 200;
const int g_nsigmaSpaceMaxValue = 200;
int g_ndValue = 11;
int g_nsigmaColorValue = 10;
int g_nsigmaSpaceValue = 10;
Mat g_srcImage;
Mat g_dstImage;
void on_bilateralFilterTrackbar(int, void*);
//高斯滤波的核
vector<vector<double>> getGaussianArray(int iKernalSize, double dSigma)
{
//assert(iKernalSize < 3 || iKernalSize % 2 == 0);
const double pi = 3.14159265359;
vector<vector<double>> kernal(iKernalSize, vector<double>(iKernalSize, 0));
int r = iKernalSize / 2;
//double sum = 0.0f;
double dSigmaSquare2 = (-2.0f) * dSigma*dSigma;
for (int y = -r; y <= r; ++y)
{
for (int x = -r; x <= r; ++x)
{
kernal[y + r][x + r] = exp((y*y + x*x) / dSigmaSquare2);
//sum += kernal[y + r][x + r];
}
}
// for (int y = 0; y < iKernalSize; ++y)
// {
// for (int x = 0; x < iKernalSize; ++x)
// {
// kernal[y][x] /= sum;
// }
// }
return kernal;
}
vector<double> getSpaceWeightArray(double sigmaSpace)
{
//由于公式中颜色差绝对值也一定在0-255之间,所以提前算好打表,之后只需要计算颜色差的绝对值,从表里取即可
double dSigmaSquare2 = (-2.0f) * sigmaSpace*sigmaSpace;
vector<double> weight(255, 0);
for (int i = 0; i < 255; ++i)
{
weight[i] = exp(i*i / dSigmaSquare2);
}
return weight;
}
void MyBilateralFilterTrackbar(const Mat & src, Mat &dst, int d, double sigmaColor, double sigmaSpace)
{
auto colorKernel = getGaussianArray(d, sigmaColor);
auto spaceWeight = getSpaceWeightArray(sigmaSpace);
int h = src.rows;
int w = src.cols;
int r = d / 2;
if (dst.empty())
{
dst.create(h, w, src.type());
}
Mat paddingSrc;
//拷贝边缘
cv::copyMakeBorder(src, paddingSrc, r, r, r, r, cv::BORDER_REPLICATE);
for (int y = r; y < h + r; ++y)
{
for (int x = r; x < w + r; ++x)
{
double sumWeights = 0;
double v = 0;
for (int _y = -r; _y <= r; ++_y)
{
for (int _x = -r; _x <= r; ++_x)
{
//套公式
uchar curColor = paddingSrc.at<uchar>(y+_y, x+_x);
auto w = colorKernel[_y + r][_x + r] * spaceWeight[abs(paddingSrc.at<uchar>(y, x) - curColor)];
v += curColor * w;
sumWeights += w;
}
}
dst.at<uchar>(y - r, x - r) = uchar(v / sumWeights);
}
}
}
int main()
{
g_srcImage = imread("E:/Resources/bilateralFilterTest.jpg");
if (g_srcImage.empty())
{
cout << "图像加载失败!" << endl;
return -1;
}
else
cout << "图像加载成功!" << endl << endl;
namedWindow("原图像", WINDOW_AUTOSIZE);
imshow("原图像", g_srcImage);
namedWindow("双边滤波图像", WINDOW_AUTOSIZE);
char dName[20];
sprintf(dName, "邻域直径 %d", g_ndMaxValue);
char sigmaColorName[20];
sprintf(sigmaColorName, "sigmaColor %d", g_nsigmaColorMaxValue);
char sigmaSpaceName[20];
sprintf(sigmaSpaceName, "sigmaSpace %d", g_nsigmaSpaceMaxValue);
//创建滚动条
createTrackbar(dName, "双边滤波图像", &g_ndValue, g_ndMaxValue, on_bilateralFilterTrackbar);
createTrackbar(sigmaColorName, "双边滤波图像", &g_nsigmaColorValue,g_nsigmaColorMaxValue, on_bilateralFilterTrackbar);
createTrackbar(sigmaSpaceName, "双边滤波图像", &g_nsigmaSpaceValue,g_nsigmaSpaceMaxValue, on_bilateralFilterTrackbar);
on_bilateralFilterTrackbar(g_nsigmaSpaceValue, 0);
waitKey(0);
return 0;
}
void on_bilateralFilterTrackbar(int, void*)
{
//cv::bilateralFilter(g_srcImage, g_dstImage, g_ndValue, g_nsigmaColorValue, g_nsigmaSpaceValue);
if (g_ndValue % 2 == 0)
g_ndValue++;
if (g_srcImage.channels() == 3)
{
vector<Mat> srcs;
vector<Mat> dsts(3);
split(g_srcImage, srcs);
for (int i = 0; i < 3; ++i)
{
MyBilateralFilterTrackbar(srcs[i], dsts[i], g_ndValue, g_nsigmaColorValue, g_nsigmaSpaceValue);
}
merge(dsts, g_dstImage);
}
else
MyBilateralFilterTrackbar(g_srcImage, g_dstImage, g_ndValue, g_nsigmaColorValue, g_nsigmaSpaceValue);
imshow("双边滤波图像", g_dstImage);
}