opencv学习(二十二)之双边滤波bilateralFilter

本文介绍了双边滤波器的基本原理和作用,它是一种非线性滤波方法,能在保持图像边缘的同时去除噪声。OpenCV提供了bilateralFilter()函数来实现双边滤波,参数包括滤波直径、颜色空间滤波器的sigma值和坐标空间滤波器的sigma值。尽管双边滤波器在处理边缘细节上有优势,但其效率较低,且选择合适的sigma值至关重要,过小影响不大,过大可能导致图像卡通化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

双边滤波是一种非线性的滤波方法,是结合图像的空间邻近度和像素值相似度的一种折衷处理,同时考虑空间与信息和灰度相似性,达到保边去噪的目的,具有简单、非迭代、局部处理的特点。之所以能够达到保边去噪的滤波效果是因为滤波器由两个函数构成:一个函数是由几何空间距离决定滤波器系数,另一个是由像素差值决定滤波器系数。
双边滤波器中,输出像素的值依赖于邻域像素的值的加权组合,其公式如下:
这里写图片描述
权重系数w(i,j,k,l)取决于定义域核
这里写图片描述
和值域核
这里写图片描述
的乘积,也就是
这里写图片描述

通俗来讲就是双边滤波模板主要有两个模板生成,第一个是高斯模板,第二个是以灰度级的差值作为函数系数生成的模板,然后这两个模板点乘就得到了最终的双边滤波模板,第一个模板是全局模板,所以只需要生成以西,第二个模板需要对每个像素都计算一次。双边滤波器比高斯滤波器多了一个高斯方差sigma-d,它是基于空间分布的高斯滤波函数,所以在边缘附近,离的较远的像素不会太多影响到边缘上的像素,这样就能对边缘附近的像素值予以保存,但是由于保存过多的高频信息,对于彩色图像里的高频噪声,双边滤波器不能够干净的滤掉,只能够对于低频信息进行较好的滤除。

opencv中提供了bilateralFilt

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值