tensorFlow之tfrecords文件详细

一. 将图片准换为tfrecords文件

我的任务是图到图的过程

import tensorflow as tf
import cv2
import glob

if __name__ == "__main__":
    label_path_list = glob.glob("img/*label*")
    ghost_path_list = [i.replace("label", "ghost") for i in label_path_list]

    label_imgs = [cv2.imread(i) for i in label_path_list]
    ghost_imgs = [cv2.imread(i) for i in ghost_path_list]
    
    tfrecord_file='picture_train.tfrecords'
    writer=tf.python_io.TFRecordWriter(tfrecord_file)

    for i in range(len(label_imgs)):
        features = tf.train.Features(feature={'ghost':tf.train.Feature(bytes_list=tf.train.BytesList(value=[ghost_imgs[i].tobytes()])),
        'label':tf.train.Feature(bytes_list=tf.train.BytesList(value=[label_imgs[i].tobytes()]))
        })

        example=tf.train.Example(features=features)

        writer.write(example.SerializeToString())

    writer.close()

二. tfrecords转化为图片

与上面的代码一一对应

import tensorflow as tf
import cv2

def load_image():
    tf_files = ["picture_train.tfrecords"]
    load_w = 440
    filename_queue = tf.train.string_input_producer(tf_files)
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)
    features = tf.parse_single_example(serialized_example,
                                   features={'ghost': tf.FixedLenFeature([], tf.string),
                                             'label': tf.FixedLenFeature([], tf.string),
                                             })
    _ghost = tf.decode_raw(features['ghost'], tf.uint8, name='decode_raw')
    _label = tf.decode_raw(features['label'], tf.uint8, name='decode_raw')
    _ghost = tf.reshape(_ghost, [load_w, load_w, 3])
    _label = tf.reshape(_label, [load_w, load_w, 3])

    sess = tf.Session()
    coord = tf.train.Coordinator()
    tf.train.start_queue_runners(sess=sess, coord=coord)

    for i in range(100):
        ghost, label = sess.run([_ghost, _label])
        cv2.imwrite(f"img/{i}_ghost.jpg", ghost)
        cv2.imwrite(f"img/{i}_label.jpg", label)


if __name__ == '__main__':
    load_image()

参考:https://blog.youkuaiyun.com/qq_27825451/article/details/83301811
官网描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值