POJ2155——Matrix

Description

Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row and j-th column. Initially we have A[i, j] = 0 (1 <= i, j <= N).

We can change the matrix in the following way. Given a rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2), we change all the elements in the rectangle by using "not" operation (if it is a '0' then change it into '1' otherwise change it into '0'). To maintain the information of the matrix, you are asked to write a program to receive and execute two kinds of instructions.

1. C x1 y1 x2 y2 (1 <= x1 <= x2 <= n, 1 <= y1 <= y2 <= n) changes the matrix by using the rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2).
2. Q x y (1 <= x, y <= n) querys A[x, y].

Input

The first line of the input is an integer X (X <= 10) representing the number of test cases. The following X blocks each represents a test case.

The first line of each block contains two numbers N and T (2 <= N <= 1000, 1 <= T <= 50000) representing the size of the matrix and the number of the instructions. The following T lines each represents an instruction having the format "Q x y" or "C x1 y1 x2 y2", which has been described above.

Output

For each querying output one line, which has an integer representing A[x, y].

There is a blank line between every two continuous test cases.

Sample Input

1
2 10
C 2 1 2 2
Q 2 2
C 2 1 2 1
Q 1 1
C 1 1 2 1
C 1 2 1 2
C 1 1 2 2
Q 1 1
C 1 1 2 1
Q 2 1

Sample Output

1
0
0
1

Source

POJ Monthly,Lou Tiancheng


很好的题啊,一开始想错更新方向了,怎么都想不通.....
求某个点的值就是求这个点的更新次数,因为这个矩阵是01矩阵

而求这个点的更新次数又可以转化为求树状数组子矩阵 (1,1)---(x,y)的和,可以这么想,所有会让点(x,y)修改的点都在他左上方的矩阵上,那么那些点每更新一次,点(x,y)也要更新一次

#include<stack>
#include<queue>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>

using namespace std;

const int N=1010;
int tree[N][N];

int lowbit(int x)
{
    return x&(-x);
}

void add(int x,int y)
{
    for (int i=x;i<=N;i+=lowbit(i))
        for (int j=y;j<=N;j+=lowbit(j))
            tree[i][j]++;
}

int sum(int x,int y)
{
    int ans=0;
    for (int i=x;i;i-=lowbit(i))
        for (int j=y;j;j-=lowbit(j))
            ans+=tree[i][j];
    return ans;
}

int main()
{
    int x,n,T,x1,y1,x2,y2;
    char op[3];
    scanf("%d",&x);
    while (x--)
    {
        scanf("%d%d",&n,&T);
        memset(tree,0,sizeof(tree));
        while (T--)
        {
            scanf("%s",op);
            if (op[0]=='C')
            {
                scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
                add(x1,y1);
                add(x1,y2+1);
                add(x2+1,y1);
                add(x2+1,y2+1);
            }
            else
            {
                scanf("%d%d",&x1,&y1);
                printf("%d\n",sum(x1,y1)%2);
            }
        }
       	printf("\n");
    }
    return 0;
}


### POJ 平台边缘检测问题解决方案 对于POJ平台上编号为1009的题目——《Edge Detection》,暴力求解尝试对每一个像素单独计算输出值可能会因为时间和空间限制而失败[^1]。因此,更有效的算法是必要的。 核心思想在于仅针对特定的变化点及其周围的8个邻近位置进行运算,即总共九个点[vn,rn]中的变化点v0,v1,...,vn被识别并用于后续处理[^3]。这种策略显著减少了不必要的计算量,提高了效率。 为了实现上述逻辑,在具体编码过程中可以采用如下Python代码: ```python def edge_detection(image_matrix): rows = len(image_matrix) cols = len(image_matrix[0]) result = [[0]*cols for _ in range(rows)] directions = [ (-1,-1),(0,-1),(1,-1), (-1, 0), (1, 0), (-1, 1),(0, 1),(1, 1) ] def is_edge(i,j,value): nonlocal image_matrix,directions for di,dj in directions: ni,nj=i+di,j+dj if not(0<=ni<rows and 0<=nj<cols): continue neighbor_value=image_matrix[ni][nj] if abs(value-neighbor_value)>20: return True return False for i in range(rows): for j in range(cols): current_pixel=image_matrix[i][j] if is_edge(i,j,current_pixel): result[i][j]=current_pixel return result ``` 这段程序定义了一个`edge_detection()`函数接收二维列表形式表示的灰度图作为参数,并返回一个新的同样大小但只保留边缘特征的矩阵。通过遍历每个像素点与其周围八个方向相邻节点之间的差异来决定当前像素是否属于边界的一部分;当发现任何一对相差超过给定阈值(这里设定为20)时,则认为该处存在边沿特性并将相应位置设置为目标图像中相同坐标的元素值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值