总体框架
mapOptimization.cpp中的主函数,主函数中,闭环检测是一个单独线程运行的。run()函数中运行的是地图优化位姿的算法。
这里需要说明的是,node与线程的关系???
int main(int argc, char** argv)
{
ros::init(argc, argv, "lego_loam");
ROS_INFO("\033[1;32m---->\033[0m Map Optimization Started.");
mapOptimization MO;
std::thread loopthread(&mapOptimization::loopClosureThread, &MO);
std::thread visualizeMapThread(&mapOptimization::visualizeGlobalMapThread, &MO);
ros::Rate rate(200);
while (ros::ok())
{
ros::spinOnce();
MO.run();
rate.sleep();
}
loopthread.join();
visualizeMapThread.join();
return 0;
}
回环
在LeGO-LOAM中使用了简单的基于轨迹位姿方法的回环检测,论文假设采用了地图优化方法的位姿优化结果偏移小,因此可以这样做。但是实际上无法应对大距离范围下的尺度漂移,存在着数据同源的问题。本小节来看一下,它是怎么实现的闭环检测。总体上来讲,第一步是检测回环,第二步是添加优化。
回环检测运行频率是1Hz。调用的perform函数中首先调用了decect函数。
void loopClosureThread()
{
if (loopClosureEnableFlag == false)
return;
ros::Rate rate(1);
while (ros::ok()){
rate.sleep();
performLoopClosure();
}
}
detect函数的流程:
1.使用KDtree寻找当前位姿的历史最近位姿:radiusSearch。当找到的位姿满足时间上与当前帧间隔大于30的条件就认为是合格的最近位置,并保留下来。
2.储存最新的这一帧点云,以作为闭环检测匹配计算中的目标值,并转换到世界坐标系下。
3.储存被找到的那一帧历史点云及其附近的几帧点云,并把他们转换到世界坐标系中。
4.如果订阅者数量不是0,则把数据发布出去。
bool detectLoopClosure(){
latestSurfKeyFrameCloud->clear();
nearHistorySurfKeyFrameCloud->clear();
nearHistorySurfKeyFrameCloudDS->clear();
std::lock_guard<std::mutex> lock(mtx);
// find the closest history key frame
std::vector<int> pointSearchIndLoop;
std::vector<float> pointSearchSqDisLoop;
kdtreeHistoryKeyPoses->setInputCloud(cloudKeyPoses3D);
kdtreeHistoryKeyPoses->radiusSearch(currentRobotPosPoint, historyKeyframeSearchRadius, pointSearchIndLoop, pointSearchSqDisLoop, 0);
closestHistoryFrameID = -1;
for (int i = 0; i < pointSearchIndLoop.size(); ++i){//搜索出来的所有帧
int id = pointSearchIndLoop[i];
if (abs(cloudKeyPoses6D->points[id].time - timeLaserOdometry) > 30.0){//该帧必须得与当前帧间隔一定的时间
closestHistoryFrameID = id;
break;
}
}
if (closestHistoryFrameID == -1){
return false;
}
// save latest key frames
latestFrameIDLoopCloure = cloudKeyPoses3D->points.size() - 1;
*latestSurfKeyFrameCloud += *transformPointCloud(cornerCloudKeyFrames[latestFrameIDLoopCloure], &cloudKeyPoses6D->points[latestFrameIDLoopCloure]);
*latestSurfKeyFrameCloud += *transformPointCloud(surfCloudKeyFrames[latestFrameIDLoopCloure], &cloudKeyPoses6D->points[latestFrameIDLoopCloure]);
pcl::PointCloud<PointType>::Ptr hahaCloud(new pcl::PointCloud<PointType>());
int cloudSize = latestSurfKeyFrameCloud->points.size();
for (int i = 0; i < cloudSize; ++i){
if ((int)latestSurfKeyFrameCloud->points[i].intensity >= 0){
hahaCloud->push_back(latestSurfKeyFrameCloud->points[i]);
}
}
latestSurfKeyFrameCloud->clear();
*latestSurfKeyFrameCloud = *hahaCloud;
// save history near key frames
for (int j = -historyKeyframeSearchNum; j <= historyKeyframeSearchNum; ++j){
if (closestHistoryFrameID + j < 0 || closestHistoryFrameID + j > latestFrameIDLoopCloure)
continue;
*nearHistorySurfKeyFrameCloud += *transformPointCloud(cornerCloudKeyFrames[closestHistoryFrameID+j], &cloudKeyPoses6D->points[closestHistoryFrameID+j]);
*nearHistorySurfKeyFrameCloud += *transformPointCloud(surfCloudKeyFrames[closestHistoryFrameID+j], &cloudKeyPoses6D->points[closestHistoryFrameID+j]);
}
downSizeFilterHistoryKeyFrames.setInputCloud(nearHistorySurfKeyFrameCloud);
downSizeFilterHistoryKeyFrames.filter(*nearHistorySurfKeyFrameCloudDS);
// publish history near key frames
if (pubHistoryKeyFrames.getNumSubscribers() != 0){
sensor_msgs::PointCloud2 cloudMsgTemp;
pcl::toROSMsg(*nearHistorySurfKeyFrameCloudDS, cloudMsgTemp);
cloudMsgTemp.header.stamp = ros::Time().fromSec(timeLaserOdometry);
cloudMsgTemp.header.frame_id = "/camera_init";
pubHistoryKeyFrames.publish(cloudMsgTemp);
}
return true;
}
perform函数是回环过程的主体函数。函数的流程如下:
1.调用detect函数,检测出历史位置上的回环,并储存好源和目标点云及位置数据。
void performLoopClosure(){
if (cloudKeyPoses3D->points.empty() == true)
return;
// try to find close key frame if there are any
if (potentialLoopFlag == false){
if (detectLoopClosure() == true){
potentialLoopFlag = true; // find some key frames that is old enough or close enough for loop closure
timeSaveFirstCurrentScanForLoopClosure = timeLaserOdometry;
}
if (potentialLoopFlag == false)
return;
}
// reset the flag first no matter icp successes or not
potentialLoopFlag = false;
2.使用PCL函数库的ICP算法对源和目标进行匹配计算。设计最大的相关性距离是100,最大迭代次数为100。求解出源和目标之间的相对位姿。
// ICP Settings
pcl::IterativeClosestPoint<PointType, PointType> icp;
icp.setMaxCorrespondenceDistance(100);
icp.setMaximumIterations(100);
icp.setTransformationEpsilon(1e-6);
icp.setEuclideanFitnessEpsilon(1e-6);
icp.setRANSACIterations(0);
// Align clouds
icp.setInputSource(latestSurfKeyFrameCloud);
icp.setInputTarget(nearHistorySurfKeyFrameCloudDS);
pcl::PointCloud<PointType>::Ptr unused_result(new pcl::PointCloud<PointType>());
icp.align(*unused_result);
if (icp.hasConverged() == false || icp.getFitnessScore() > historyKeyframeFitnessScore)
return;
// publish corrected cloud
if (pubIcpKeyFrames.getNumSubscribers() != 0){
pcl::PointCloud<PointType>::Ptr closed_cloud(new pcl::PointCloud<PointType>());
pcl::transformPointCloud (*latestSurfKeyFrameCloud, *closed_cloud, icp.getFinalTransformation());
sensor_msgs::PointCloud2 cloudMsgTemp;
pcl::toROSMsg(*closed_cloud, cloudMsgTemp);
cloudMsgTemp.header.stamp = ros::Time().fromSec(timeLaserOdometry);
cloudMsgTemp.header.frame_id = "/camera_init";
pubIcpKeyFrames.publish(cloudMsgTemp);
}
3.使用gtsam库,构建约束项,在isam中添加约束。
首先按照凸优化的概念来讲,一个约束的顶点分别是:
T
1
=
T
i
c
p
∗
T
k
T_1=T_{icp}*T_k
T1=Ticp∗Tk ;
T
k
T_k
Tk是当前位姿;
T
i
c
p
T_{icp}
Ticp是icp计算出来的当前帧与回环检测帧之间的相对位姿
T
2
=
T
h
i
s
t
r
o
r
y
n
e
a
r
s
t
T_2=T_{histrorynearst}
T2=Thistrorynearst
/*
get pose constraint
*/
float x, y, z, roll, pitch, yaw;
Eigen::Affine3f correctionCameraFrame;//仿射矩阵(包括平移旋转放缩剪切等)是一个包含旋转和平移的4*4矩阵
correctionCameraFrame = icp.getFinalTransformation(); // get transformation in camera frame (because points are in camera frame)
pcl::getTranslationAndEulerAngles(correctionCameraFrame, x, y, z, roll, pitch, yaw);
Eigen::Affine3f correctionLidarFrame = pcl::getTransformation(z, x, y, yaw, roll, pitch);
// transform from world origin to wrong pose
Eigen::Affine3f tWrong = pclPointToAffine3fCameraToLidar(cloudKeyPoses6D->points[latestFrameIDLoopCloure]);
// transform from world origin to corrected pose
Eigen::Affine3f tCorrect = correctionLidarFrame * tWrong; // pre-multiplying -> successive rotation about a fixed frame
pcl::getTranslationAndEulerAngles (tCorrect, x, y, z, roll, pitch, yaw);
gtsam::Pose3 poseFrom = Pose3(Rot3::RzRyRx(roll, pitch, yaw), Point3(x, y, z));
gtsam::Pose3 poseTo = pclPointTogtsamPose3(cloudKeyPoses6D->points[closestHistoryFrameID]);
gtsam::Vector Vector6(6);
float noiseScore = icp.getFitnessScore();
Vector6 << noiseScore, noiseScore, noiseScore, noiseScore, noiseScore, noiseScore;
constraintNoise = noiseModel::Diagonal::Variances(Vector6);
/*
add constraints
*/
std::lock_guard<std::mutex> lock(mtx);
gtSAMgraph.add(BetweenFactor<Pose3>(latestFrameIDLoopCloure, closestHistoryFrameID, poseFrom.between(poseTo), constraintNoise));
isam->update(gtSAMgraph);//更新isam()
isam->update();
gtSAMgraph.resize(0);
aLoopIsClosed = true;
}
isam->update添加新的因子,更新整个解决方案,并重新线性化。注意并没有调用状态优化的计算。

总结gtsam在这一部分中的使用:
NonlinearFactorGraph::add() //添加因子
ISAM2::update() //更新结构,向解决方案中添加因子
本文深入解析了LeGO-LOAM激光雷达定位与建图系统中的回环闭合检测与优化算法。文章详细介绍了回环检测的流程,包括利用KD树寻找历史最近位姿、点云配准与地图优化。通过ICP算法进行点云匹配,使用gtsam库进行优化,确保了地图的准确性和一致性。
5185





