1.谁是我邻居–kdTree&OcTree
由于分割工作需要对点云的邻近点进行操作,不断对比和访问某个点的邻居,所以决定点云的相邻关系是非常重要的。对于Scan来说,邻居关系是天然的。但对于很多杂乱点云,或者滤波,分割后的点云来说,邻居关系就已经被破坏了。确定一个点云之间的相邻关系可以通过“树”来完成,目前比较主流的方法包括:kdTree和OcTree,这两种方法各有特点。
1.1.kdTree—一种递归的邻近搜索策略
关于kdTree到底是怎么工作的https://en.wikipedia.org/wiki/K-d_tree这里有非常详细的说明,我不再赘述。但是kdTree实际上包括两个部分:1.建立kdTree,2.在kdTree中查找。建立kdTree实际上是一个不断划分的过程,首先选择最sparse的维度,然后找到该维度上的中间点,垂直该维度做第一次划分。此时k维超平面被一分为二,在两个子平面中再找最sparse的维度,依次类推知道最后一个点也被划分。那么就形了一个不断二分的树。如图所示。
显然,一般情况下一个点的邻近点只需要在其父节点和子节点中搜索即可,大大缩小了邻近点的搜索规模。并且kdtree可以有效的对插入点进行判断其最近点在哪个位置。对于低层次视觉来说kdTree算法是非常重要的。在很多情况下需要给出某个点,再查k临近点的编号,或者差某半径范围内的点。PCL已经实现了kdtree算法,其调用接口如下:
#include <pcl/point_cloud.h>
#include